
CS 61A Scheme
Summer 2019 Discussion 8: July 30, 2019

1 Introduction
In the next part of the course, we will be working with the Scheme programming

language. In addition to learning how to write Scheme programs, we will eventually

write a Scheme interpreter in Project 4!

Scheme is a dialect of the Lisp programming language, a language dating back

to 1958. The popularity of Scheme within the programming language community

stems from its simplicity – in fact, previous versions of CS 61A were taught in the

Scheme language.

2 Primitives and Defining Variables
Scheme has a set of atomic primitive expressions. Atomic means that these expres-

sions cannot be divided up.

scm> 123

123

scm> #t

True

scm> #f

False

Unlike in Python, the only primitive in Scheme that is a false value is #f and its

equivalents, false and False. This means that 0 is not false.

The define special form defines variables and procedures by binding a value to a

variable, just like the assignment statement in Python. When a variable is defined,

the define special form returns a symbol of its name. A procedure is what we call

a function in Scheme!

The syntax to define a variable and procedure are:

• (define <variable name> <value>)

• (define (<function name> <parameters>) <function body>)

Special forms are types of expressions with unique evaluation rules that can do a

variety of things. Often times, speical forms are analagous to statements in Python,

such as assignment statements, if statements, and def statements. However, all

special forms in Scheme evaluate to a value. We’ll learn more about special forms

later in the discussion.



2 Scheme

3 Call Expressions
Call expressions apply a procedure to some arguments.

(<operator> <operand1> <operand2> ...)

Call expressions in Scheme work exactly like they do in Python. To evaluate them:

1. Evaluate the operator to get a procedure.

2. Evaluate each of the operands from left to right.

3. Apply the value of the operator to the evaluated operands.

For example, consider the call expression (+ 1 2). First, we evaluate the symbol +

to get the built-in addition procedure. Then we evaluate the two operands 1 and 2

to get their corresponding atomic values. Finally, we apply the addition procedure

to the values 1 and 2 to get the return value 3.

Operators may be symbols, such as + and *, or more complex expressions, as long

as they evaluate to procedure values.

scm> (- 1 1) ; 1 - 1

0

scm> (/ 8 4 2) ; 8 / 4 / 2

1

scm> (* (+ 1 2) (+ 1 2)) ; (1 + 2) * (1 + 2)

9

Some important built-in functions you’ll want to know are:

• +, -, *, /

• =, >, >=, <, <=

• quotient, modulo, even?, odd?

Questions
3.1 What would Scheme display?

scm> (define a (+ 1 2))

scm> a

scm> (define b (+ (* 3 3) (* 4 4)))

scm> (+ a b)

scm> (= (modulo 10 3) (quotient 5 3))

scm> (even? (+ (- (* 5 4) 3) 2))



Scheme 3

4 Special Forms
Special form expressions contain a special form as the operator. Special form

expressions do not follow the same rules of evaluation as call expressions. Each

special form has its own rules of evaluation – that’s what makes them special!

If Expression
An if expression looks like this:

(if <predicate> <if-true> [if-false])

<predicate> and <if-true> are required expressions and [if-false] is optional.

The rules for evaluation are as follows:

1. Evaluate <predicate>.

2. If <predicate> evaluates to a truth-y value, evaluate <if-true> and return

its value. Otherwise, evaluate [if-false] if provided and return its value.

This is a special form because not all operands will be evaluated! Only one of the

second and third operands is evaluated, depending on the value of the first operand.

Remember that only #f is a false-y value in Scheme; everything else is truth-y.

scm> (if (< 4 5) 1 2)

1

scm> (if #f (/ 1 0) 42)

42

Boolean Operators
Like Python, Scheme also has the boolean operators and, or, and not. and and or

are special forms because they are short-circuiting operators.

• and takes in any amount of operands and evaluates these operands from left to

right until one evaluates to a false-y value. It returns that first false-y value.

If there are no false-y values, it returns the value of the last expression (or #t

if there are no operands)

• or also evaluates any number of operands from left to right until one evaluates

to a truth-y value. It returns that first truth-y value. If there are no truth-

y values, it returns the value of the last expression (or #f if there are no

operands)

• not takes in a single operand, evaluates it, and returns its opposite truthiness

value. Note that not is a regular procedure and not a special form.

scm> (and 25 32)

32

scm> (or 1 (/ 1 0)) ; Short-circuits

1

scm> (not (odd? 10))

#t



4 Scheme

Questions
4.1 What would Scheme display?

scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

scm> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (* 3 2)))

scm> ((if (< 4 3) + -) 4 100)

scm> (if 0 1 2)

Lambdas and Defining Functions
All Scheme procedures are lambda procedures. One way to create a procedure is

to use the lambda special form.

(lambda (<param1> <param2> ...) <body>)

This expression creates a lambda function with the given parameters and body, but

does not evaluate the body. Just like in Python, the body is not evaluated until

the function is called and applied to some argument values. The fact that neither

operand is evaluated is what makes lambda a special form.

Another similarity to Python is that lambda expressions do not assign the returned

function to any name. We can assign the value of an expression to a name with a

define special form.

For example, (define square (lambda (x) (* x x))) creates a lambda procedure

that squares its argument and assigns that procedure to the name square.

The second version of the define special form is a shorthand for this function

definition:

(define (<name> <param1> <param2 ...>) <body>)

This expression creates a function with the given parameters and body and binds

it to the given name.

scm> (define square (lambda (x) (* x x))) ; Bind the lambda function to the name square

square

scm> (define (square x) (* x x)) ; Equivalent to the line above

square

scm> square

(lambda (x) (* x x))

scm> (square 4)

16



Scheme 5

Questions
4.1 Write a function that returns the factorial of a number.

(define (factorial x)

4.2 Write a function that returns the nth Fibonacci number.

(define (fib n)

)

scm> (fib 0)

0

scm> (fib 1)

1

scm> (fib 10)

55

5 Pairs and Lists
All lists in Scheme are linked lists. Scheme lists are composed of two element pairs.

We define a list as being either

• the empty list, nil

• a pair whose second element is a list

As in Python, linked lists are recursive data structures. The base case is the empty

list.

We use the following procedures to construct and select from lists:

• (cons first rest) constructs a list with the given first element and rest of

the list. For now, if rest is not a pair or nil it will error.

• (car lst) gets the first item of the list

• (cdr lst) gets the rest of the list

scm> nil

()

scm> (define lst (cons 1 (cons 2 (cons 3 nil))))

lst

scm> lst

(1 2 3)



6 Scheme

scm> (car lst)

1

scm> (cdr lst)

(2 3)

scm> (car (cdr lst))

2

scm> (cdr (cdr (cdr lst)))

()

The rule for displaying lists is very similar to that for the Link class from earlier in

the class’s str method. It prints out the elements in the linked list as if the list

has no nested structure.

scm> (cons 1 (cons 2 (cons 3 nil)))

(1 2 3)

scm> (cons 1 (cons (cons 2 (cons 3 nil)) nil))

(1 (2 3))

Two other common ways of creating lists is using the built-in list procedure or the

quote special form:

• The list procedure takes in an arbitrary amount of arguments. Because

it is a procedure, all operands are evaluated when list is called. A list is

constructed with the values of these operands and is returned.

• The quote special form takes in a single operand. It returns this operand

exactly as is, without evaluating it. Note that this special form can be used

to return any value, not just a list.

scm> (define x 2)

scm> (list 1 x 3)

(1 2 3)

scm> (quote (1 x 3))

(1 x 3)

scm> '(1 x 3) ; Equivalent to the previous quote expression

(1 x 3)

=, eq?, equal?
• = can only be used for comparing numbers.

• eq? behaves like == in Python for comparing two non-pairs (numbers, booleans,

etc.). Otherwise, eq? behaves like is in Python.

• equal? compares pairs by determining if their cars are equal? and their cdrs

are equal?(that is, they have the same contents). Otherwise, equal? behaves

like eq?.

scm> (define a '(1 2 3))

a

scm> (= a a)

Error



Scheme 7

scm> (equal? a '(1 2 3))

#t

scm> (eq? a '(1 2 3))

#f

scm> (define b a)

b

scm> (eq? a b)

#t

Questions
5.1 Write a function which takes two lists and concatenates them.

Notice that simply calling (cons a b) would not work because it will create a

deep list. Do not call the builtin procedure append, which does the same thing as

my-append.

(define (my-append a b)

)

scm> (my-append '(1 2 3) '(2 3 4))

(1 2 3 2 3 4)

5.2 Write a function that takes an element x and a non-negative integer n, and returns

a list with x repeated n times.

(define (replicate x n)

scm> (replicate 5 3)

(5 5 5)

5.3 A run-length encoding is a method of compressing a sequence of letters. The list

(a a a b a a a a) can be compressed to ((a 3) (b 1) (a 4)), where the compressed

version of the sequence keeps track of how many letters appear consecutively.



8 Scheme

Write a function that takes a compressed sequence and expands it into the original

sequence. Hint: You may want to use concat and replicate.

(define (uncompress s)

scm> (uncompress '((a 1) (b 2) (c 3)))

(a b b c c c)



Scheme 9

6 Extra Questions
6.1 Write a function that takes a procedure and applies it to every element in a given

list.

(define (map fn lst)

scm> (map (lambda (x) (* x x)) '(1 2 3))

(1 4 9)

6.2 Fill in the following to complete an abstract tree data type:

(define (make-tree label branches) (cons label branches))

(define (label tree)

(define (branches tree)

6.3 Using the abstract data type above, write a function that sums up the entries of a

tree, assuming that the entries are all numbers.

Hint: you may want to use the map function you defined above, and also write a

helper function for summing up the entries of a list.

(define (tree-sum tree)


	Introduction
	Primitives and Defining Variables
	Call Expressions
	Special Forms
	Pairs and Lists
	Extra Questions

