
CS 61A Recursion and Tree Recursion, HOFs
Summer 2019 Guerrilla Section 1: July 5, 2019

1 Recursion and Tree Recursion
Questions

1.1 What are three things you find in every recursive function?

1.2 When you write a Recursive function, you seem to call it before it has been fully

defined. Why doesn’t this break the Python interpreter?

1.3 Below is a Python function that computes the nth Fibonacci number. Identify the

three things it contains as a recursive function (from 1.1).

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

|\begin{solution}[0.75in]

\begin{verbatim}

Domain is integers, range is integers.

Base Cases: if n == 0: ..., elif n == 1: ...

Finding Smaller Problems: finding fib(n - 1), fib(n - 2)

Recursive Case: when n is neither 0 nor 1, add together the fib(n - 1) and fib(n - 2) to find fib(n)

\end{verbatim}

\end{solution}|

1.4 With the definition of the Fibonacci function above, draw out a diagram of the

recursive calls made when fib(4) is called.

2 Recursion and Tree Recursion, HOFs

1.5 What does the following function cascade2 do? What is its domain and range?

def cascade2(n):

print(n)

if n >= 10:

cascade2(n//10)

print(n)

1.6 Consider an insect in an M by N grid. The insect starts at the bottom left corner,

(0, 0), and wants to end up at the top right corner (M-1, N-1). The insect is only

capable of moving right or up. Write a function paths that takes a grid length and

width and returns the number of different paths the insect can take from the start

to the goal. (There is a closed-form solution to this problem, but try to answer it

procedurally using recursion.)

def paths(m, n):

"""

>>> paths(2, 2)

2

>>> paths(117, 1)

1

"""

Recursion and Tree Recursion, HOFs 3

1.7 Write a procedure merge(s1, s2) which takes two sorted (smallest value first) lists

and returns a single list with all of the elements of the two lists, in ascending order.

Use recursion.

Hint: If you can figure out which list has the smallest element out of both, then we

know that the resulting merged list will have that smallest element, followed by the

merge of the two lists with the smallest item removed. Don’t forget to handle the

case where one list is empty!

def merge(s1, s2):

""" Merges two sorted lists

>>> merge([1, 3], [2, 4])

[1, 2, 3, 4]

>>> merge([1, 2], [])

[1, 2]

"""

1.8 Mario needs to jump over a sequence of Piranha plants, represented as a string of

spaces (no plant) and P’s (plant!). He only moves forward, and he can either step

(move forward one space) or jump (move forward two spaces) from each position.

How many different ways can Mario traverse a level without stepping or jumping

into a Piranha plant? Assume that every level begins with a space (where Mario

starts) and ends with a space (where Mario must end up):

Hint: You can get the ith character in a string ‘s‘ by using ‘s[i]‘. For example,

>>> s = 'abcdefg'

>>> s[0]

'a'

>>> s[2]

'c'

You can find the total number of characters in a string with the built-in‘len‘ function:

>>> s = 'abcdefg'

>>> len(s)

7

>>> len('')

0

def mario_number(level):

"""Return the number of ways that Mario can perform a sequence of steps

or jumps to reach the end of the level without ever landing in a Piranha

plant. Assume that every level begins and ends with a space.

4 Recursion and Tree Recursion, HOFs

>>> mario_number(' P P ') # jump, jump

1

>>> mario_number(' P P ') # jump, jump, step

1

>>> mario_number(' P P ') # step, jump, jump

1

>>> mario_number(' P P ') # step, step, jump, jump or jump, jump, jump

2

>>> mario_number(' P PP ') # Mario cannot jump two plants

0

>>> mario_number(' ') # step, jump ; jump, step ; step, step, step

3

>>> mario_number(' P ')

9

>>> mario_number(' P P P P P P P P ')

180

"""

! Don’t move on until you have been checked-off.

Topic Review:

Make sure you have a good understanding of these topics before

getting checked off.

• Identifying the three parts of a recursive function.

• Evaluating the output of a recursive function.

• Using multiple base cases and recursive cases (tree recursion)

Recursion and Tree Recursion, HOFs 5

2 Higher Order Functions
Questions

2.1 What do lambda expressions do? Can we write all functions as lambda expressions?

In what cases are lambda expressions useful?

2.2 Determine if each of the following will error:

>>> 1/0

|\begin{solution}

Error

\end{solution}|

>>> boom = lambda: 1/0

|\begin{solution}

No error, since we don't evaluate the body of the lambda when we define it.

\end{solution}|

>>> boom()

|\begin{solution}

Error

\end{solution}|

2.3 Express the following lambda expression using a def statement, and the def state-

ment using a lambda expression.

pow = lambda x, y: x**y

|\begin{solution}[0.25in]

\begin{verbatim}

def pow(x, y):

return x**y

\end{verbatim}

\end{solution}|

def foo(x):

def f(y):

def g(z):

return x + y * z

return g

return f

6 Recursion and Tree Recursion, HOFs

2.4 Draw Environment Diagrams for the following lines of code

square = lambda x: x * x

higher = lambda f: lambda y: f(f(y))

higher(square)(5)

a = (lambda f, a: f(a))(lambda b: b * b, 2)

Recursion and Tree Recursion, HOFs 7

2.5 Write make skipper, which takes in a number n and outputs a function. When

this function takes in a number x, it prints out all the numbers between 0 and x,

skipping every nth number (meaning skip any value that is a multiple of n).

def make_skipper(n):

"""

>>> a = make_skipper(2)

>>> a(5)

1

3

5

"""

|\begin{solution}[1.5in] \begin{verbatim}

def skipper(x):

for i in range(x + 1):

if i % n != 0:

print(i)

return skipper

\end{verbatim}

\end{solution}|

2.6 Write a function that takes in a function cond and a number n and prints numbers

from 1 to n where calling cond on that number returns True.

def keep_ints(cond, n):

"""Print out all integers 1..i..n where cond(i) is true

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> keep_ints(is_even, 5)

2

4

"""

8 Recursion and Tree Recursion, HOFs

2.7 Write a function similar to keep_ints like before, but now it takes in a number n

and returns a function that has one parameter cond. The returned function prints

out numbers from 1 to n where calling cond on that number returns True.

def make_keeper(n):

"""Returns a function which takes one parameter cond and prints out

all integers 1..i..n where calling cond(i) returns True.

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> make_keeper(5)(is_even)

2

4

"""

! Don’t move on until you have been checked-off.

Topic Review:

Make sure you have a good understanding of these topics before

getting checked off.

• The difference between lambda and def.

• Higher order lambda functions.

• Analyzing functions that return functions.

Recursion and Tree Recursion, HOFs 9

Optional

2.8 Write make alternator which takes in two functions, f and g, and outputs a

function. When this function takes in a number x, it prints out all the numbers

between 1 and x, applying the function f to every odd-indexed number and g to

every even-indexed number before printing.

def make_alternator(f, g):

"""

>>> a = make_alternator(lambda x: x * x, lambda x: x + 4)

>>> a(5)

1

6

9

8

25

>>> b = make_alternator(lambda x: x * 2, lambda x: x + 2)

>>> b(4)

2

4

6

6

"""

|\begin{solution}

\begin{verbatim}

def alternator(n):

i = 1

while i <= n:

if i % 2 == 1:

print(f(i))

else:

print(g(i))

i += 1

return alternator

\end{verbatim}

\end{solution}|

	Recursion and Tree Recursion
	Higher Order Functions

