1.1

CS 61A Lists, Muta]oility, ADTS, and Trees

Summer 2019

Guerrilla Section 2: July 12, 2019

1 Sequences

Questions

What would Python display?

1st = [1, 2, 3, 4, 5]
1st[1:3]
|\begin{solution}
[2, 3]
\end{solution}|
1st[@:1len(1lst)]
|\begin{solution}
[1, 2, 3, 4, 5]
\end{solution}|
1st[-4:]
|\begin{solution}
[2, 3, 4, 5]
\end{solution}|
1st[3:]
|\begin{solution}
[4, 5]
\end{solution}|
1st[1:4:2]

| \begin{solution}
[2, 4]
\end{solution}|
1st[:4:2]
|\begin{solution}
[1, 3]
\end{solution}|
1st[1::2]
|\begin{solution}
[2, 4]
\end{solution}|
Ist[::-1]
|\begin{solution}
[5, 4, 3, 2, 1]
\end{solution}|
1st + 100
|\begin{solution}

Error (These aren't numpy arrays)

2 Lists, Mutability, ADTs, and Trees

\end{solution}|

1st3 = [[1]1, [2], [3]]

1st + 1st3

|\begin{solution}

L1, 2, 3, 4, 5, 011, [2]1 , [3]1]
\end{solution}|

Lists, Mutability, ADTs, and Trees 3

1.2 Draw the environment diagram that results from running the code below

def reverse(lst):
if len(lst) <= 1:
return lst
return reverse(lst[1:]) + [1st[0]]

1st

rev

1, [2, 31, 4]
reverse(lst)

1.3 Implement a function map_mut that takes a list as an argument and maps a function
f onto each element of the list. You should mutate the original lists, without creating
any new lists. Do NOT return anything.
def map_mut(f, L):

>>> L = [1, 2, 3, 4]

>>> map_mut (lambda x: x**2, L)
>>> L

[1, 4, 9, 16]

1.4 Check your understanding

1 When copying the list, when are you copying a pointer of the list vs. copying
the actual value inside of a list?

2 How would you make a deep copy of a list?

2.1

2.2

2.3

2.4

4 Lists, Mutability, ADTs, and Trees

2 Mutability

Questions

Name two data types that are mutable. What does it mean to be mutable?
Name at least two data types at are not mutable.

Will the following code error? If so, why?

a=1

b =2

dt = {a: 1, b: 2}

|\begin{solution}

No -- a and b are both immutable, so we can use them as Dictionary keys.
\end{solution}|

a = [1]

b = [2]

dt = {a: 1, b: 2}

|\begin{solution}

Yes -- a and b are mutable, so we can't use them as Dictionary keys.
\end{solution}|

Fill in the output and draw a box-and-pointer diagram for the following code. If

an error occurs, write Error, but include all output displayed before the error.

a=1[1, [2, 3], 4]
c = al1]

c
|\begin{solution}
[2, 3]
\end{solution}|
a.append(c)

a

| \begin{solution}
L1, [2, 31, 4, [2, 3]1]
\end{solution}|
cfo] =0

c
|\begin{solution}
[0, 3]
\end{solution}|

a
|\begin{solution}
[1, [e, 31, 4, [0, 31]
\end{solution}|
a.extend(c)

2.5

Lists, Mutability, ADTs, and Trees 5

c[11 =9

a
|\begin{solution}
[1, [e, 91, 4, [0, 91, o, 3]
\end{solution}|
list1 = [1, 2, 3]
list2 = [1, 2, 3]
list1 == list2
|\begin{solution}
True
\end{solution}|
list1 is list2
|\begin{solution}
False
\end{solution}|

Check your understanding:

1 What is the difference between the append function, extend function, and the

'+’ operator?

2 Given the below code, answer the following questions: a = [1, 2, [3, 4], 5]
b = al]

b[l] =6

b[2][0] = 7

What does b evaluate to?

What does a evaluate to? Are a and b the same? Please explain your reasoning.

3.1

3.2

3.3

6 Lists, Mutability, ADTs, and Trees

3 Data Abstraction

Questions

What are the two types of functions necessary to make an Abstract Data Type?
What do they do?

Assume that rational, numer, denom, and gcd run without error and behave as
described below. Can you identify where the abstraction barrier is broken? Come
up with a scenario where this code runs without error and a scenario where this

code would stop working.

def rational(num, den): # Returns a rational number ADT
#implementation not shown

def numer(x): # Returns the numerator of the given rational
#implementation not shown

def denom(x): # Returns the denominator of the given rational
#implementation not shown

def gcd(a, b): # Returns the GCD of two numbers
#implementation not shown

def simplify(f1): #Simplifies a rational number
g = ged(f1L0], f1[11)
return rational(numer(f1) // g, denom(f1) // g)

def multiply(f1, f2): # Multiples and simplifies two rational numbers
r = rational (numer(f1) * numer(f2), denom(f1) x denom(f2))
return simplify(r)

X = rational(1, 2)

y = rational(2, 3)

multiply(x, y)

Check your understanding
1 How do we know what we are breaking an abstraction barrier?

2 What are the benefits to Data Abstraction?

Lists, Mutability, ADTs, and Trees 7

11 ilif(BEBS

Questions

Fill in this implementation of the Tree ADT.

def tree(label, branches = []):
for b in branches:

assert is_tree(b), 'branches must be trees
return [label] + list(branches)

def is_tree(tree):
if type(tree) != list or len(tree) < 1:
return False
for b in branches(tree):
if not is_tree(b):
return False

return True

def label(tree):
|\begin{solution}
\begin{verbatim}
return tree[0]

\end{verbatim}

\end{solution}|

def branches(tree):
|\begin{solution}
\begin{verbatim}
return tree[1:]

\end{verbatim}

\end{solution}|

def is_leaf(tree):
|\begin{solution}
\begin{verbatim}
return not branches(tree)
\end{verbatim}
\end{solution}|

A min-heap is a tree with the special property that every nodes value is less than
or equal to the values of all of its children. For example, the following tree is a

min-heap:

8 Lists, Mutability, ADTs, and Trees

However, the following tree is not a min-heap because the node with value 3 has a

value greater than one of its children:

4.3

Lists, Mutability, ADTs, and Trees 9

Write a function is_min_heap that takes a tree and returns True if the tree is a

min-heap and False otherwise.

def is_min_heap(t):

|\begin{solution}[@.75in]

\begin{verbatim}

for b in branches(t):

if label(t) > label(b) or not is_min_heap(b):

return False

return True

\end{verbatim}

\end{solution}|

Write a function largest_product_path that finds the largest product path pos-
sible. A product path is defined as the product of all nodes between the root
and a leaf. The function takes a tree as its parameter. Assume all nodes have a

non-negative value.

3

I
7 8 4

I
2 1

For example, calling largest_product_path on the above tree would return 42,
since 3 * 7 * 2 is the largest product path.

def largest_product_path(tree):

>>> largest_product_path(None)
Q
>>> largest_product_path(tree(3))
3
>>> t = tree(3, [tree(7, [tree(2)]), tree(8, [tree(1)]), tree(4)]1)
>>> largest_product_path(t)
42
|\begin{solution}[1in]
\begin{verbatim}
if not tree:
return 0
elif is_leaf(tree):
return label(tree)
else:
paths = [largest_product_path(t) for t in branches(tree)]
return label(tree) * max(paths)
\end{verbatim}
\end{solution}|

4.4 Check your understanding;:

10 Lists, Mutability, ADTs, and Trees

1 Given the first tree in 4.2, write the corresponding python call to create the tree

2 What is the benefit of using a tree as a data structure, rather than a list or
linked list?

3 Below is the function contains, which takes in an input of a tree, t and a value,
e. The function returns true if e exists as a label inside t. However, the function

does not work properly, debug this code and find the error(s).

def contains(t, e):

if is_leaf(t):
return False

elif e == label(t):
return True

else:
for b in branches(t):

return contains(b, e)

return True

4 Implement a function max_tree, which takes a tree t. It returns a new tree with
the exact same structure as t; at each node in the new tree, the entry is the largest
number that is contained in that node’s subtrees or the corresponding node in t.

def max_tree(t):
>>> max_tree(tree(1, [tree(5, [tree(7)1),tree(3,[tree(9),tree(4)]),tree(6)]1))
tree(9, [tree(7, [tree(7)]),tree(9,[tree(9),tree(4)]),tree(6)])

return

else:

new_branches=

new_label =

return

4.5

4.6

Lists, Mutability, ADTs, and Trees 11

Challenge Question: The level-order traversal of a tree is defined as visiting the
nodes in each level of a tree before moving onto the nodes in the next level. For

example, the level order of the following tree is: 3 7 8 4

Write a function level _order that takes in a tree as the parameter and returns a

list of the values of the nodes in level order.

def level_order(tree):
[\begin{solution}
\begin{verbatim}
#iterative solution
def level_order(tree)
if not tree:
return []
current_level, next_level = [label(tree)], [tree]
while next_level:
find_next= []
for b in next_level:
find_next.extend(branches(b))
next_level = find_next
current_level.extend([label(t) for t in next_level])
return current_level

\end{verbatim}
\end{solution}|

Challenge Question: Write a function all_paths which will return a list of lists of
all the possible paths of an input tree, t. When the function is called on the same
tree as the problem above, the function would return: [[3,7],[3, 8], [3, 4]]

def all_paths(t):
if

else:

12 Lists, Mutability, ADTs, and Trees

	Sequences
	Mutability
	Data Abstraction
	Trees

