
Iterators

Iterators

!4

A container can provide an iterator that provides access to its elements in order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value 

Return the next element in an iterator

>>> s = [3, 4, 5] 
>>> t = iter(s) 
>>> next(t) 
3 
>>> next(t) 
4
>>> u = iter(s) 
>>> next(u) 
3 
>>> next(t) 
5 
>>> next(u) 
4

(Demo)

Dictionary Iteration

Views of a Dictionary

!6

A dictionary, its keys, its values, and its items are all iterable values 

• The order of items in a dictionary is the order in which they were added (Python 3.6+) 

• Historically, items appeared in an arbitrary order (Python 3.5 and earlier)

>>> d = {'one': 1, 'two': 2, 'three': 3} 
>>> d['zero'] = 0 
>>> k = iter(d.keys())  # or iter(d) 
>>> next(k) 
'one' 
>>> next(k) 
'two' 
>>> next(k) 
'three' 
>>> next(k) 
'zero'

>>> v = iter(d.values()) 
>>> next(v) 
1 
>>> next(v) 
2 
>>> next(v) 
3 
>>> next(v) 
0

An iterable value is any value that can be passed to iter to produce an iterator 

An iterator is returned from iter and can be passed to next; all iterators are mutable

>>> i = iter(d.items()) 
>>> next(i) 
('one', 1) 
>>> next(i) 
('two', 2) 
>>> next(i) 
('three', 3) 
>>> next(i) 
('zero', 0)

(Demo)

For Statements

(Demo)

Built-In Iterator Functions



Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

!9

map(func, iterable): 

filter(func, iterable): 

zip(first_iter, second_iter): 

reversed(sequence):

Iterate over func(x) for x in iterable 

Iterate over x in iterable if func(x) 

Iterate over co-indexed (x, y) pairs 

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable): 

tuple(iterable): 

sorted(iterable):

Create a list containing all x in iterable 

Create a tuple containing all x in iterable 

Create a sorted list containing x in iterable

(Demo)

Generators

Generators and Generator Functions

A generator function is a function that yields values instead of returning them 

A normal function returns once; a generator function can yield multiple times 

A generator is an iterator created automatically by calling a generator function 

When a generator function is called, it returns a generator that iterates over its yields

!11

(Demo)

>>> def plus_minus(x): 
...     yield x 
...     yield -x 

>>> t = plus_minus(3) 
>>> next(t) 
3 
>>> next(t) 
-3 
>>> t 
<generator object plus_minus ...>

Generators & Iterators

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

!13

def a_then_b(a, b): 
    yield from a 
    yield from b

def a_then_b(a, b): 
    for x in a: 
        yield x 
    for x in b: 
        yield x

def countdown(k): 
    if k > 0: 
        yield k 
        yield from countdown(k-1)

>>> list(a_then_b([3, 4], [5, 6])) 
[3, 4, 5, 6]

>>> list(countdown(5)) 
[5, 4, 3, 2, 1] 

(Demo)


