Efficient Sequence Processing

Streams Announcements
Sequence Operations Streams are Lazy Scheme Lists
Map, filter, and reduce express sequence manipulation using compact expressions A stream is a list, but the rest of the list is computed only when needed:
Example: Sun all primes in an interval from a (inclusive) to b (exclusive) (car (cons 1 nil)) —> 1 (car (cons-stream 1 nil)) — 1
1 1 - -5t -st 1 nil, E
def sun_prines(a, b): def sum_prines(a, b): (cdr (cons 1 nil)) - () (cdr-stream (cons-stream 1 nil)) - ()
total = @ return sun(filter(is_prime, range(a, b))) = .
it ‘ Streams (cons 1 (cons 2 nil)) (cons-stream 1 (cons-stream 2 nil))
Nhile x < be sum_primes(1, 6)
$ X Lo . Errors only occur when expressions are evaluated:
if is_prime(x): sum filter range iterator
total = total + x (cons 1 (cons (/ 10) nil)) ~> ERROR
X=x+1 source: —»| source: —»| next: 8
return total total: 80 | | f: is_prine end: 6 (cons-strean 1 (cons-strean (/ 1 @) nil)) > (1 . #[promise (not forced)])
(car (cons-stream 1 (cons-stream (/ 1 0) nil))) -> 1
S| H C tant
pace onstan Also Constant (cdr-strean (cons-stream 1 (cons-stream (/ 1 0) nil))) -> ERROR
(Demo) (Demo)
Stream Ranges are Implicit Integer Stream
A stream can give on-demand access to each element in order An integer stream is a stream of consecutive integers
(define (range-stream a b) The rest of the stream is not yet computed when the stream is created
(if (>= a b)
nil N 3
(define (int-stream start)
. (cons-stream start (int-stream (+ start 1))))
Infinite Streams

(cons-stream a (range-stream (+ a 1) b))))
(define lots (range-stream 1 10006000000000000000))
scm> (car lots)
1cm> (car (cdr-stream lots))

2
scm> (car (cdr-stream (cdr-stream lots)))
(Demo)

Recursively Defined Streams
The rest of a constant stream is the constant stream
(define ones (cons-stream 1 ones))

Combine two streams by separating each into car and cdr

Stream Processing (define (add-streams s t)

Higher-Order Functions on Streams

Implementations are identical,
but change cons to cons-stream
and change cdr to cdr-stream

(cons-stream (+ (car s) (car t))
(add-streams (cdr-stream s)
(cdr-strean t))))

(define ints (cons-stream 1 (add-streams ones ints)))

(Demo)

A Stream of Primes
(define (map-$tegam f s)

(if (r);ll? s) For any prime k, any larger prime must not be divisible by k.
ni
(cons-¢réaar(£)fcar s))
(map-§trean The stream of integers not divisible by any k <= n is:
(cdr-s3)dan s))))) The stream of integers not divisible by any k < n

(define (filter-stedam f <) Filtered to remove any element divisible by n

(if (null? s) This recurrence is called the Sieve of Eratosthenes

+ o+

12 3 456 7 ...

nil
(if (F (car 5))
(cons-gtaeam) (car s)
(filter-§tedn €)J3dr-stream s))) i 3.\4{ 5,\§< 7,\8\,\\9\,\3‘1(11, i\z(13
)

(filter-$t¢edm £)§3diy-stream s))))

(define (reduce-§tpeamafty start)
(if (null? s)
start
(reduce-$tream f
(cdr-sjream s)
(f start (car s)))))

(Demo)

Higher-Order Stream Functions

