
CS 61A Structure and Interpretation of Computer Programs
Fall 2018 Midterm 1

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5" × 11"
crib sheet of your own creation and the official CS 61A midterm 1 study guide.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.
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Name of the person to your right

All the work on this exam is my own.
(please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• You may use built-in Python functions that do not require import, such as min, max, pow, len, and abs.

• You may not use example functions defined on your study guides unless a problem clearly states you can.

• For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.
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1. (10 points) What Would Python Display (All are in Scope: WWPD, Lambda Expressions, Higher-Order
Functions)

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but
include all output displayed before the error. If evaluation would run forever, write “Forever”. To display a
function value, write “Function”. The first two rows have been provided as examples.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have first started python3 and executed the statements on the left.

identity = lambda x: x
increment = lambda x: x + 1

def fif(c, t, f, x):
if c(x):

return t(x)
else:

return f(x)

def bounce(x, y):
while x < y:

if x <= (y and x):
print('a')

if x > 0:
print('b')

elif x > -5:
print('c')

x, y = -y, increment(x - y)
print(y)

crazy = lambda rich: 100 * rich
crazy = lambda rich: crazy(crazy(rich))

def ok(py):
def h(w):

print(py // 10)
return ok(py)

return lambda h: h(py)

Expression Interactive Output
pow(10, 2) 100

print(4, 5) + 1
4 5
Error

print(None, print(1, 2))

fif(abs, print, print, -2)

bounce(1, 2)

crazy(88)

ok(314)(identity)
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2. (4 points) (All are in Scope: Lambda Expressions, Higher-Order Functions) Implement factorial, which
computes the factorial of a positive integer n. You may use any of the functions defined above. You may not
write if, else, and, or, or lambda in your solution.

def factorial(n):
"""The factorial of positive n: n * (n-1) * (n-2) * ... * 1

>>> factorial(4) # 4 * 3 * 2 * 1
24
>>> factorial(1)
1
"""
return n * fif(________________, ________________, ________________, ________________)
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3. (6 points) Also Some Meal (All are in Scope: Environment Diagrams, Lambda Expressions, Higher-Order
Functions)

Fill in the environment diagram that results from executing the code
on the right until the entire program is finished, an error occurs, or all
frames are filled. You may not need to use all of the spaces or frames.
A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

Global frame aldef al(so): 
    me = 1 
    def al(to): 
        return so + me 
    so = 2 
    return al 

def me(al): 
    me = 3 
    return al(lambda: 4) + so 

so = 5 
so = me(al(6)) + so

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13

func me(al) [parent=Global]

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

me

func al(so) [parent=Global]



Name: 5

Global frame aldef al(so): 
    me = 1 
    def al(to): 
        return so + me 
    so = 2 
    return al 

def me(al): 
    me = 3 
    return al(lambda: 4) + so 

so = 5 
so = me(al(6)) + so

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13

func me(al) [parent=Global]

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

me

func al(so) [parent=Global]
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4. (5 points) Getting Rect (All are in Scope: Control)

Implement rect, which takes two positive integer arguments, perimeter and area. It returns the integer
length of the longest side of a rectangle with integer side lengths ` and h which has the given perimeter and
area. If no such rectangle exists, it returns False.

The perimeter of a rectangle with sides ` and h is 2`+ 2h. The area is ` · h.
Hint: The built-in function round takes a number as its argument and returns the nearest integer. For example,
round(2.0) evaluates to 2, and round(2.5) evaluates to 3.

def rect(area, perimeter):
"""Return the longest side of a rectangle with area and perimeter that has integer sides.

>>> rect(10, 14) # A 2 x 5 rectangle
5
>>> rect(5, 12) # A 1 x 5 rectangle
5
>>> rect(25, 20) # A 5 x 5 rectangle
5
>>> rect(25, 25) # A 2.5 x 10 rectangle doesn't count because sides are not integers
False
>>> rect(25, 29) # A 2 x 12.5 rectangle doesn't count because sides are not integers
False
>>> rect(100, 50) # A 5 x 20 rectangle
20
"""

side = 1

while side * side ____________________________________________________________________ area:

other = round(_________________________________________________________________________)

if ____________________________________________________________________________________:

___________________________________________________________________________________

side = side + 1

return False



Name: 7

5. (6 points) Dig It (All are in Scope: Control, Higher-Order Functions)

Implement sequence, which takes a positive integer n and a function term. It returns an integer whose digits
show the n elements of the sequence term(1), term(2), . . . , term(n) in order. Assume the term function takes
a positive integer argument and returns a positive integer.

Important: You may not use pow, **, log, str, or len in your solution.

def sequence(n, term):
"""Return the first n terms of a sequence as an integer.

>>> sequence(6, abs) # Terms are 1, 2, 3, 4, 5, 6
123456
>>> sequence(5, lambda k: k+8) # Terms are 9, 10, 11, 12, 13
910111213
>>> sequence(4, lambda k: pow(10, k)) # Terms are 10, 100, 1000, 10000
10100100010000
"""

t, k = 0, 1

while _____________________________________________________________________________________:

m = 1

x = ___________________________________________________________________________________

________________________________________________________________________________ m <= x:

___________________________________________________________________________________

t = ___________________________________________________________________________________

k = k + 1

return t
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6. (9 points) This Again? (At least one of these is out of Scope: Self Reference, Higher-Order Functions,
Lambda Expressions, Control)

Definitions. A repeatable integer function takes an integer argument and returns a repeatable integer function.

(a) (6 pt) Implement repeat, which is a repeatable integer function that detects repeated arguments. As a side
effect of repeated calls, it prints each argument that has been used before in a sequence of repeated calls.
Therefore, if an argument appears n times, it is printed n− 1 times in total, each time other than the first.
The detector function is part of the implementation of repeat; you must determine how it is used.
Important: You may not use a list, set, or any other data type not covered yet in the course.

def repeat(k):
"""When called repeatedly, print each repeated argument.

>>> f = repeat(1)(7)(7)(3)(4)(2)(5)(1)(6)(5)(1)
7
1
5
1
"""

return _____________________________________________________________________________(k)

def detector(f):

def g(i):

if ________________________________________________________________________________:

_______________________________________________________________________________

return ____________________________________________________________________________

return g

(b) (3 pt) Implement repeat_digits, which takes a non-negative integer n. For the digits of n from right to
left, it prints each digit that also appears somewhere to its right. Assume repeat is implemented correctly.

def repeat_digits(n):
"""Print the repeated digits of non-negative integer n.

>>> repeat_digits(581002821)
2
0
1
8
"""

f = _____________________________________________________________________________________

while n:

f, n = _____________________________________ , ______________________________________


