
CS61B, Fall 2004 Project #1 P. N. Hilfinger

Due: Wednesday, 13 October 2004 at 2400

1 Introduction

This first project involves writing a miniature relational database management system (DBMS)
that stores tables of data, where a table consists of some number of labeled columns of information.
Our system will include a very simple query language for extracting information from these tables.
For the purposes of this project, we will deal only with very small databases, and therefore will
not consider speed and efficiency at all. For that sort of stuff, you might consider taking CS186
at some point.

As an example, consider the following set of three tables containing information about students,
about course numbers and locations, and about grades in these courses. Each table has a name
(given above the upper-left corner) and each column of each table has a name (given above the
double line).

students
SID Lastname Firstname SemEnter YearEnter Major

101 Knowles Jason F 2003 EECS
102 Chan Valerie S 2003 Math
103 Xavier Jonathan S 2004 LSUnd
104 Armstrong Thomas F 2003 EECS
105 Brown Shana S 2004 EECS
106 Chan Yangfan F 2003 LSUnd

schedule
CCN Num Dept Time Room Sem Year

21228 61A EECS 2-3MWF 1 Pimentel F 2003
21231 61A EECS 1-2MWF 1 Pimentel S 2004
21229 61B EECS 11-12MWF 155 Dwinelle F 2003
21232 61B EECS 1-2MWF 2050 VLSB S 2004
21103 54 Math 1-2MWF 2050 VLSB F 2003
21105 54 Math 1-2MWF 1 Pimentel S 2004
21001 1A English 9-10MWF 2301 Tolman F 2003
21005 1A English 230-5TuTh 130 Wheeler S 2004

enrolled
SID CCN Grade

101 21228 B
101 21105 B+
101 21232 A-
101 21001 B
102 21231 A
102 21105 A-
102 21229 A
102 21001 B+
103 21105 B+
103 21005 B+
104 21228 A-
104 21229 B+
104 21105 A-
104 21005 A-
105 21228 A
105 21001 B+
106 21103 A
106 21001 B
106 21231 A

2 Commands.

When you run the database system, it will accept a sequence of commands from the standard
input (i.e., normally the terminal), in one of the following formats:

/* comment */
Comments have no effect.

load table ;
Load data from the file table.db to create a table named table.

1



Project #1 2

insert into table values literal . . . ;
Add a new row to the given table whose values are given by the list of literals (see the
description of literals below). There must be exactly one literal for each column of the table,
and the table must already exist. This command has no effect if there is already a row in
the table with these values.

print table ;
Print all rows of the named table, one per line and indented. Separate columns with blanks,
and print the columns in the order they were specified when the table was created. See the
example below for the format.

select columns from table where conditions ;
Find every row of the given table (the name of a table) that satisfies the conditions (see
below), and print the listed columns (see example below) for each one (as for the print

command, above). The “where conditions” part may be left off, in which case look at all
rows. Print any given set of column values only once.

select columns from table1 table2 where conditions ;
Find every pair of rows—one from table1 and one from table2—that satisfies the conditions,
and print the listed columns for each such pair. The two tables must be different. Again,
The “where. . . ” part is optional. Print any given set of column values only once.

name : select . . . ;
where “select ...” is one of the forms above. Instead of printing the columns found by
the “select” part, create a new table, giving it the indicated name. The columns of this table
have the names and order of the columns listed by the columns part of the “select.” If name
denotes the value of an existing table, replace that table with the new one. Each distinct
set of column values gets only one row in the table (no duplicate rows).

quit ;
Exit the program.

exit ;
Synonym for quit.

Naming columns. The columns specifications in the preceding commands consist of one or
more entries of the form table.name separated by whitespace, where table is the name of one of
the tables listed after the ‘from’, and name is the name of a column of that table. It is an error if
a table is not one of those listed after from or a name is not a valid column name for that table.
You can leave off the table argument, in which case you get the first table listed after from. To
simplify your life, we’ll also require that all the names in a given columns list be distinct.

Conditions. Each conditions clause consists of one or more tests separated by the word ‘and’.
Each test is of the form X R Y , where X is a column (as described above), Y is either a column
or a literal, and R is a relation symbol, one of =, !=, <= <, >=, or >. A literal is just a sequence
of valid characters (see Boring Lexical Details below) delimited by single quotes (’) on both sides.
The relation symbols mean what they do in Java, except that all values are treated as strings (use
compareTo method on Strings to compare them). Thus you can write things like

students.SID = enrolled.SID and students.Lastname >= ’Chan’



Project #1 3

Boring Lexical Details. Column and table names may consist only of letters, digits, and the
underscore character (_). The names “from” and “where” are illegal. Values in rows and literals
may consist of any printable characters except comma (’,’), end-of-line characters, and single
quotes (’). All the pieces (tokens) of a command must be separated from each other by whitespace
(blanks, tabs, ends of lines), except that a column designator (table.column) contains no space
around the period. You write

students.SID = enrolled.SID not students.SID=enrolled.SID

load foo ; not load foo;

3 Format of .db files

A .db file contains first an integer giving the number of columns, followed by that number of
strings giving the names of the columns. This is followed by any number of lines containing the
values for each row. The items on any line: the number of columns, the column names, and the
column values, are separated from each other by commas, which are separated from other data
by whitespace (so be careful not to add blanks around values inadvertently.) For example, the
‘students’ table shown previously would look like this in a file:

6,SID,Lastname,Firstname,SemEnter,YearEnter,Major

101,Knowles,Jason,F,2003,EECS

102,Chan,Valerie,S,2003,Math

103,Xavier,Jonathan,S,2004,LSUnd

104,Armstrong,Thomas,F,2003,EECS

105,Brown,Shana,S,2004,EECS

106,Chan,Yangfan,F,2003,LSUnd

4 Example

If the information in these tables exists in three files—students.db, schedule.db, and enrolled.db—
then a session with our DBMS might look like the following transcript. Characters typed by the
user are underlined.

DB61B System. Version 1.0

> load students ;

Loaded students.db

> load enrolled ;

Loaded enrolled.db

> load schedule ;

Loaded schedule.db

> /* What are the names and SIDS of all students whose last name

is ’Chan’? */

> select SID Firstname from students

where students.Lastname = ’Chan’ ;

Search results:

102 Valerie

106 Yangfan

> /* Who took the course with CCN 21001, and what were their grades? */

> select students.Firstname students.Lastname enrolled.Grade



Project #1 4

from students enrolled where enrolled.CCN = ’21001’

and students.SID = enrolled.SID ;

Search results:

Jason Knowles B

Shana Brown B+

Yangfan Chan B

Valerie Chan B+

> /* Who has taken the course named 61A from EECS? */

> /* First, create a table that contains SIDs and course names */

> enrolled2 : select enrolled.SID

from enrolled schedule

where enrolled.CCN = schedule.CCN and schedule.Dept = ’EECS’

and schedule.Num = ’61A’ ;

> /* Print these SIDs */

> print enrolled2 ;

Contents of enrolled2:

101

102

104

105

106

> /* Now print the names of the students in this list */

> select students.Firstname students.Lastname from students enrolled2

where students.SID = enrolled2.SID ;

Search results:

Jason Knowles

Valerie Chan

Thomas Armstrong

Shana Brown

Yangfan Chan

> quit ;

5 Your Task

The directory ~cs61b/hw/proj1 will contain a few skeleton files that may suggest some structure
for this project. Copy them into a fresh directory as a starting point. Please read General
Guidelines for Programming Projects (see the “homework” page on the class web site). To submit
your result, use the command ‘submit proj1’. You will turn in nothing on paper.

Be sure to include tests of your program (yes, that is part of the grade). The makefile we
provide has a convenient target for running such tests. Our skeleton directory contains a couple
of trivial tests, but these do not constitute an adequate set of tests! Make up your tests ahead of
time and update your makefile to run them.

The input to your program will come from fallible humans. Therefore, part of the problem is
dealing gracefully with errors. When the user makes a syntax error, or mentions a non-existent
column, your program should not simply halt and catch fire, but should give some sort of message
and then try to get back to a usable state. For syntactic errors (errors in the format of commands)
you should skip to the next semicolon (if it hasn’t occurred yet) or the end-of-file, whichever comes
first. For all errors, you should print a single, separate line starting with the word “error” (in
upper or lower case) and followed by any message, and the erroneous command should have no



Project #1 5

effect on any table. Your program should not exit with a cryptic stack trace.
Be sure to include documentation. This is the first project, so the documentation should be

very straightforward: a user’s manual explaining how to use your program, and a brief internals
document describing overall program structure. For the user’s manual, don’t just paraphrase our
description; try to “add value” in the form of more helpful examples and perhaps a slower and
more gentle treatment.

Our testing of your projects (but not our grading!) will be automated. The testing program
will be finicky, so be sure that:

• Your makefile is set up to compile everything on the command gmake and to run all your
tests on the command gmake check. The makefile provided in our skeleton files is already
set up to do this. Be sure to keep it up to date if you add additional .java files.

• Your main function must be in a class called db61b. The skeleton is already set up this way.

• The first line of output of your program identifies the program. It may contain anything.

• Before reading the first command and on reading each subsequent semicolon or comment,
your program must print the prompt ‘> ’ (greater than followed by a blank). No cute or
obscene phrases, please, just ‘> ’. If you decide to go the extra mile and output prompts
after every end-of-line as well, feel free.

• Output things in exactly the format shown in the example, with no extra adornment.

• Put your error messages on separate lines, starting with the word ‘error’ (upper or lower
case). The grading program will ignore the text of the message.

• Your program should exit without further output when it encounters a quit (or exit)
command or an end-of-file in the input.

• Your final version must not print any debugging information.

• When printing out the contents of a table, you need not worry about the order of the rows
(the autograder will be clever enough to handle any order). However, you must print columns
in the order specified in the .db file or in the columns of the select command from which
the table came.

• The grading program will ignore extra blank lines and extra blanks at the ends of lines, and
will treat any run of consecutive blanks as if it were a single blank.

6 Advice

You will find this project challenging enough without helping to make it harder. Much of what
might look complicated to you is actually pretty easy, once you take the time to look to see what has
already been written for you—specifically what is in the standard Java library of classes. So, before
doing any hard work on anything that looks tricky, browse your texts and the documentation.

For reading from files (the load command), you’ll probably want to use java.io.FileReader

together with java.util.Scanner, which is also good for reading from the standard input. In fact,
we’ve tried to design the syntax to make it particularly easy to parse using Scanners. If you find
yourself writing lots of complicated junk just to read in and interpret the input, you might back off
and ask one of us to look over your approach. The standard Java string type, java.lang.String,
also contains useful member functions for doing comparisons (including comparisons that ignore



Project #1 6

case). You will need to choose some way of storing all the rows of a table. You can use arrays or
devise a kind of linked list to do so, but you might instead want to jump ahead in the course a
bit and take a look at such interfaces as java.util.List and java.util.Map and at the library
classes that implement them. Read the on-line documentation for all of these.

It’s important to have something working as soon as possible. You’ll prevent really serious
trouble by doing so. I suggest the following order to getting things working:

1. Write the user documentation.

2. Write test cases (in fact, do this every chance you get). Among other things, writing test
cases gets you to understand the specification better. Whenever you find an input that
breaks your program, make sure you capture it in a test case.

3. Get the printing of prompts, handling of comments, and the ‘quit’ and exit’ commands, and
the end of input to work.

4. Implement the Row class.

5. Implement the parts of the Table class needed to create a new Table, add a Row to it, and
print an entire Table.

6. Implement the Database class.

7. Implement insert and load.

8. The right strategy for select (not the most efficient, just the easiest) is to implement the
kind that starts with ‘name :’ first, and then implement the other (printing) kind simply
by creating an unnamed table and then printing it rather than storing it away.

9. Implement the kind of select that takes a single table and has no conditions.

10. Now get single-table select with conditions to work.

11. Finally, work on the two-table variety of select.

12. In the above steps, as you decide on implementation strategies and the data representations
you will use, write them down in your internal documentation. When you introduce new
methods or classes, write the comments first.

You may throw all our skeleton code away if you prefer. You are not required to implement
Table, Row, etc. However, we strongly recommend that you don’t do this if your only reason is
that you can’t figure out how to do it our way. In that case, pester us with questions until you do
understand.


	Introduction
	Commands.
	Format of .db files
	Example
	Your Task
	Advice

