
CS61B, Fall 2009 Project #3: Reversi P. N. Hilfinger

Due: Monday, 7 December 2009 at 2400

This is version 4, dated 18 November 2009.

1 Background

Reversi1 is a familiar two-person game played on an 8-by-8 square grid with white and black
pieces. Beginning with the position shown on the left below, play alternates between players,
with black going first. Each move consists of placing a piece of one’s own color on an empty
square so that there is a piece of the same color on the same row, column, or diagonal separated
from the empty square by one or more squares that are all filled with enemy pieces (which
we’ll say are then surrounded). After making such a move to an empty square, all newly
surrounded enemy pieces (there must be at least one) reverse their color (these reversals of
color, however, do not cause any other pieces to become surrounded). If no such move is
possible, the player passes. When both players must pass in succession, the game ends and
the player with the most pieces on the board wins.

1If we are to believe Wikipedia, Lewis Waterman invented the game in 1883, and it was re-invented without

proper attribution as the game Othello(R) in the 1970’s. I will use “Reversi,” that being the older name and I

being a traditionalist at heart.

1

Project #3 2

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Starting position

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Position after black moves to 3d

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Position just before white’s last move

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Final position: white wins

1.1 Notation

We’ll denote columns with letters a–h from the left and rows with numerals 1–8 from the top,
as shown in the illustration of the initial position on the previous page. An ordinary move
consists of a column letter followed by a row number, as in d3. A single hyphen (-) denotes
a case where one player must skip a move.

2 Textual Input Language

From your program’s point of view, we’ll refer to the two players as the Player and the
Opponent. The Player is either the person using the program (the User) or possibly an
automated player (we’ll call it an AI for short). The Opponent is either another AI or a
remote opponent (i.e., some other Reversi program). In any given game, either of these may
play black.

Commands are one to a line, with the operand (if any) separated from the command by
whitespace. Additional whitespace is legal around the command. Comments begin with a
‘#’ and proceed to the end of a line, and are ignored. Empty commands (containing only
whitespace and comments) are likewise ignored.

Project #3 3

Commands to begin and end a game.

clear Valid when no game is in progress (that is, before any game is played, or after someone
has won). Clears the board to its initial configuration.

start Valid only when no game is in progress. Begins a game, using the parameters currently
set for color, seed, and kind of player. Takes moves alternately from the Player and
Opponent according to their color and the current move number, starting from the
initial state of the board. If there have been moves made before play starts (to set up
a partially played game) then play picks up at the point where these moves leave off
(so, for example, if the Player is black and there was one move made before ‘start’,
then the Opponent will move first). In the (unusual) case where the set-up moves have
already won the game, start causes simply causes the program to announce a winner
and immediately end the game.

quit Abandons any current game and exits the program. Valid in any state.

Set-up. The following commands are valid only when a game is not in progress, and set
various parameters for the next game.

color C Sets the Player’s color to C, which may be ‘white’ or ‘black’. By default the Player
plays black.

auto Sets up the program so that the Player is an AI when play starts. Thus, when playing
locally, ‘auto’ causes both the Player and Opponent to be AIs, so that the start

command causes the machine to play a game against itself. Initially, the Player is the
User.

manual Sets up the program so that the Player is the User.

seed N If your program’s AIs use pseudo-random numbers to choose moves, this command
reseeds the pseudo-random number generator with N (a long integer). This command
has no effect if there is no random component to your automated players (or if you don’t
use them in a particular game). It doesn’t matter exactly how you use N as long as
your automated player behaves identically in response to any given sequence of moves
from its opponent each time it is seeded with N . In the absence of a seed command,
do what you want to seed your generator.

Making moves. To make a move (that is, place a piece), one simply enters the move using
the notation in §1.1 above. The effect of an ordinary move is to set a black or white piece,
depending on whose move it is, and flip any pieces indicated by the rules. The effect of a pass
(‘-’), is to do nothing but change the player on move. Passes are legal only when no move
is possible for the current player. Moves must be legal, or your program must reject them
without affecting the board (since humans are expected to make errors, your program should
ask for another move when this happens). Your AI should never even try an illegal move (at
least visibly) and when playing a remote opponent (see “Remote play”), your program must

Project #3 4

never send an illegal move. While a game is in progress (after a "start" command), a player
may resign with the command "resign", which ends the game. If you receive an erroneous
move from a remote Opponent, report an error and treat it as if the opponent resigned. As
soon as neither player can move, the game is over and neither player may move (not even to
pass) until the board is cleared. Likewise, if a game ends because a player resigns, no player
may move until the board is cleared.

Moves that the Player makes before a game starts serve to set up a starting position. That
is, any moves before play starts place black and white pieces alternately (as if both players
were playing). When play starts, the move goes to black if there have been an even number
of moves made, and to white otherwise, just as in ordinary play.

Remote play. The following two commands are valid only when a game is not in progress,
and the program is not currently connected to a remote opponent. They cause the Opponent
to become a remote player, whose moves come from another execution of the program when
play starts (see also §4 for technical details).

host ID Here, ID is any sequence of letters, underscores, and digits. This first executes
a clear command. Next, the program waits for an opponent to join (see the ‘join’
command). It then becomes the host of the next game.

join ID@hostname There may not be any whitespace in “ID@hostname.” First, execute
a clear command. There must be a program running on the machine hostname (a
name like nova.cs.berkeley, or, for another program running on the same machine,
localhost); its user must have entered the host ID command; and nobody else can
have joined the same game. The program becomes the visitor of the next game.

After two players have entered these commands (one becoming the host and the other the
visitor), the visitor program starts receiving commands from the host, which are executed
as if by the User of the visiting program. When the host program sends a start command,
the visiting program regains control, and all further commands from the host become the
Opponent’s moves.

The host program will first send a ‘color’ command to synchronize the colors of the two
programs. If the host’s Player is currently set to play black, the host sends ‘color white’,
so that the visitor’s Player will play white, and vice-versa. Any following ‘color’ or ‘clear’
commands by the host program’s player get relayed to the visitor (with ‘color’ commands
reversed), as do any set-up moves. This ends when the host sends a ‘start’ command or
breaks the connection. When the host finally sends a start command, the client program
will alternate reading commands from its Player and from the (now remote) Opponent, as
usual (which one goes first depends on whose move it is, as usual).

Because various ISPs and University system administrators block various ports (even on
the local network), it may or may not be possible to communicate to a remote machine.
However, the host localhost (meaning “this computer”) will always work, allowing you to
talk to other programs running on the same machine. So if both programs are running on
torus, say, remote communication should work.

Project #3 5

Miscellaneous commands. The following commands are valid in any state.

help Print a brief summary of the commands.

dump This command is especially for testing and debugging. It prints out the board and some
other information in exactly the following format:

===

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - w b - - -

- - - b w - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

User: black

Moves: 0

===

Here, ‘-’ indicates an empty square, ‘b’ indicates a black piece, and ‘w’ indicates a
white piece. The “User:” line tells which color the User (whether human or AI) has
(as last set at the beginning or by the ‘color’ command), and the “Moves:” line tells
how many moves (including passes) have been made since the beginning of the game or
last ‘clear’ command. These include both moves made after and before playing starts.
Don’t use the two ‘===’ markers anywhere else in your output. This command gives the
autograder a way to determine the state of your game board at any point. It does not
change any of the state of the program.

load file Reads the given file and in effect substitutes its contents for the load command
itself.

You may add any additional commands you choose.

3 Output

This time, you can prompt however you want, and print out whatever user-friendly output
you wish (other than debugging output or Java exception tracebacks, that is). For example,
you will probably want to print the game board out after each move is complete (this is
distinct from printing the board in the special format required by ‘dump’). When users enter
erroneous input, you should print an error message, and the input should have no effect (and
in particular, the user should be able to continue entering commands after an error).

After the move (or ‘resign’ command) that ends play, the program should print a line
saying either "Black wins.", "White wins.", or "Draw." as appropriate. Use exactly those
phrases, alone on their lines. Don’t use these phrases in any other situation. After this point,
the game is over, but the board remains in its final state.

Project #3 6

4 Communicating with a Remote Program

Java supplies a Remote Method Invocation (RMI) package that allows two separate programs
(possibly on different machines) to communicate with each other by calling each other’s
methods. In effect, one program can have pointers (called remote pointers) to objects in the
other program. We have developed our own packages that allow you to make use of this
facility.

You can communicate with a remote job by means of a “mailbox” abstraction that we
supply in the form of classes in the package ucb.util.mailbox. Take a look at the interface
Mailbox in that package (in the on-line documentation). The idea is that a mailbox is simply
a kind of queue. Its methods allow you to deposit messages into it, and to wait for and receive
messages that have been deposited into it, in the order they were deposited. You can do this
even if the mailbox is on another machine. The class QueuedMailbox is probably the only
implementation of Mailbox you’ll need.

To talk to a remote program, you will employ two mailboxes: one to send it messages
and one to receive messages from it. Both mailboxes will reside in the host program (the
one that issues the host command). The messages they send each other will be a subset
of the commands: the host or the client may send "resign" or moves; the host alone may
additionally send "start", "clear", or "color" commands the client alone may send an
empty command (empty string) as its first message (to tell the host that it wants to join the
game), and either may send an empty command as a closing acknowledgement after receiving
the winning move from their Opponent. The format is less free: a single space between the
operands of the ‘color’ command, and no leading or trailing whitespace.

The tricky part is getting pointers to the mailboxes from one program to the other.
For this purpose, we provide another useful type: ucb.util.SimpleObjectRegistry. A
registry is like a Map, in that it allows one to associate names with values (object refer-
ences). Suppose that the host player has entered ‘host Foo’ and is running on machine M .
The host program creates a SimpleObjectRegistry and stores two Mailboxes in it named
"Foo.IN" and "Foo.OUT" using the rebind method. When the joining (client) program
executes join FOO@M , it retrieves these Mailboxes using (for example)

(Mailbox<String>) SimpleObjectRegistry.findObject("Foo.IN","M")

The client program sends messages to the host by depositing them into the mailbox Foo.IN,
and reads messages from the host out of Foo.OUT. The roles of the two mailboxes are reversed
in the host program, of course.

Once the client program has fetched remote pointers to Foo.IN and Foo.OUT, it informs
the host program that it is ready to begin a game by sending a message consisting of the
empty string to Foo.IN. It then executes commands sent from the host, reading them from
Foo.OUT, and executes them as if they came from the User. When it receives a ‘start’
command, it continues to use Foo.OUT to receive the Opponent’s moves and Foo.IN to send
copies of the Player’s moves to the host.

On receiving the initial empty string (on Foo.IN), the host replies (on Foo.OUT) with a
‘color’ command as described above, and then continues to send copies of ‘clear’ commands,
set-up moves, and ‘color’ commands (but reversing the color) from the User until the User

Project #3 7

types a ‘start’ command. It relays this ‘start’ command and then continues to send copies
of the Player’s moves (legal ones only) and to receive (and execute) moves from the visitor
for the Opponent. The host and visitor continue to send moves to each other until either the
end of the game arrives or one of the two sends a ‘resign’ message.

When the game ends, whoever sent the last move (or resigned) should then wait for the
other side to send an empty message, which acknowledges receipt of the last move. In the
unusual case where the set-up moves have already won the game, the “winning move” is the
‘start’ command from the host.

Any other sequence of messages is illegal. Your program can recover when it detects an
illegal message sequence by treating it as if the opponent resigned (and presumably printing
an error message). This is an abnormal occurrence, so we really aren’t fussy about the details
of how you choose to recover.

Upon sending or receiving its last message for a game to one of these mailboxes, the host
program (not the visitor) should apply its .close method to make sure that the message
has been received and to shut down the mailbox. Also, the host should close its repository
when it receives the first message from the visitor. Finally, the quit command should close
any mailboxes, regardless of whether it is a host or a client, in order to signal to the other
program that it is no longer present (otherwise, when a client quits, the host might just sit
waiting forever to receive something on the client’s outbox, which the host owns).

Annoying technical glitch. When the program that creates a remote object (a mailbox
in this case) terminates, the object is destroyed, and attempts to call its methods (including
.close get RemoteExceptions. If you get such an exception, it probably means that the
other program has terminated. Be prepared to receive such exceptions (that is, don’t simply
surround everything with

try {

...

} catch (RemoteException e) { }

and effectively ignore the exception.) If you’re in the middle of a game, interpret such an
exception as a "resign" message. If you receive one of these at the end of the game (when
waiting for an empty message after sending a winning move, for example), then ignore it.

5 Running Your Program

Your job is to write a program to play Reversi. Appropriately enough, we’ll call the program
reversi. Your AIs can play arbitrarily stupidly, as long as they make only legal moves. For
extra credit, you can make them smart enough to reliably find a forced win five moves away
(i.e., a situation in which you have won after making three more moves). There will be a
tournament at the end. Also for extra credit, you can provide a GUI (after all, what computer
board game is complete without a GUI?).

To run your program, the User types

java reversi [--display]

Project #3 8

The optional parameter --display indicates that the User will communicate through a graph-
ical interface (GUI). Your program must work without this option (that’s how we test it). If
you choose not to implement a GUI, make sure that your program terminates with an error
exit code other than 0 when given the --display parameter. Otherwise, your program should
exit with exit code 0. For this project, even if someone entered invalid commands during a
session, your program should exit normally (and, of course, print error messages in response
to the errors).

6 Your Task

The staff directory will contain skeleton files for this project in proj3.
Please read General Guidelines for Programming Projects.
Be sure to include tests of your program (that is part of the grade). The makefile we

provide has a convenient target for running such tests. Our skeleton directory contains a
couple of trivial tests, but these do not constitute an adequate set of tests! Make up your
tests ahead of time and update your makefile to run them. To help with testing and debugging,
we will provide our own version of the program, so that you can test your program against
ours (we’ll be on the lookout for illegal moves). More details will follow.

The input to your program will come from fallible humans. Therefore, part of the problem
is dealing gracefully with errors. When the user makes an illegal move, tell him and just give
him another chance. We don’t care about the message format you use to do this.

Be sure to include documentation. This consists of a user’s manual explaining how to use
your program, and a brief internals document describing overall program structure, and any
important data structures and algorithms you use (especially, how does your machine player
choose its moves?).

Our testing of your projects (but not our grading!) will be automated. The testing
program will be finicky, so be sure that

gmake check

runs your tests.

7 Advice

At first glance, it might seem that with all the options available, the program would have to
be a mass of if statements covering all possible cases. But with proper use of abstraction,
this does not have to be.

We’ve included documentation for the ucb.util and ucb.util.mailbox packages in the
on-line materials. You will also want to read Chapter 11 of A Java Reference and Chapter 10
of Data Structures (Into Java) (on concurrency). If you need random numbers, take a look
at java.util.Random and Chapter 11 of Data Structures (Into Java).

I suggest working first on the classes Board, which is supposed to represent the game
board, and Command, which houses some command-parsing code.

Project #3 9

Next, implement the human player. If you now get the remote game part working (it’s
not really as hard as it sounds) you can run two versions of your program and play against
yourself, checking that the board works properly. Then you can tackle writing a machine
player. Start with something really simple (perhaps choosing a legal move at random) and
introduce strategy only when you get everything working properly.

	Background
	Notation

	Textual Input Language
	Output
	Communicating with a Remote Program
	Running Your Program
	Your Task
	Advice

