
CS61B, Fall 2011 HW #2 P. N. Hilfinger

Due: Mon, 12 September 2011 (at midnight)

We have skeleton files for your solutions available in ~cs61b/code/hw2 and also in the Sub-
version repository. Following the procedure of Lab #2, you can obtain the latter with

% cd ~/work

% svn copy $STAFFREPOS/hw2 hw2

% svn commit hw2 -m "Initial HW2 skeleton"

on the instructional machines (where $STAFFREPOS is shorthand for

https://isvn.eecs.berkeley.edu/cs61b/staff

1. In Lab #2, you started an implementation of type arith.Rational. Complete this imple-
mentation now. Copy (and commit) any files you changed from your lab2 directory into your hw2
working directory first. Add appropriate methods to Rational.java and adapt Root2.java to
produce answers comparable to those of Root1. Be careful! Since you are using long instead of
“real” integers, it’s easy for intermediate results to overflow, producing strange results, so you’ll
have to be unambitious for now. Add tests (both unit tests and regression tests) of your imple-
mentation. I’m not dictating the interface you choose for Rational, but I do suggest that you use
BigDecimal for hints, as in the lab.

2. Complete the following Java function so that it performs as indicated in its comment. The
files IntList.java and IntList2.java in the template contain the declarations of the classes
IntList and IntList2. Put your answers in a file called Lists.java, for which we’ve also
provided a template. You may find the functions in the file Utils.java to be useful for testing.

/** The list of lists formed by breaking up L into "natural runs":

* that is, maximal ascending sublists, in the same order as

* the original. For example, if L is (1, 3, 7, 5, 4, 6, 9, 10),

* then result is the three-item list ((1, 3, 7), (5), (4, 6, 9, 10)).

* Destructive: creates no new IntList items, and may modify the

* original list pointed to by L. */

static IntList2 naturalRuns (IntList L) {

/* *Fill in here* */

}

3. Complete the following Java functions so that they perform as indicated in their comments.
Remember that some arrays can have zero elements. Put your answers to this problem (all parts)
in a file named Arrays.java, for which we’ve provided a template. You may find the contents of
the file Utils.java useful in testing your answers.

1

HW #2 2

a. /** A new array consisting of the elements of A followed by the

* the elements of B. */

static int[] catenate(int[] A, int[] B) {

/* *Fill in here* */

}

b. /** The array formed by removing LEN items from A,

* beginning with item #START (counts from 0). */

static int[] remove (int[] A, int start, int len) {

/* *Fill in here* */

}

Continued. . .

HW #2 3

c. /** The array of arrays formed by breaking up A into

* maximal ascending lists, without reordering.

* For example, if A is {1, 3, 7, 5, 4, 6, 9, 10}, then

* returns the three-element array

* {{1, 3, 7}, {5}, {4, 6, 9, 10}}. */

static int[][] naturalRuns (int[] A) {

/* *Fill in here* */

}

