
CS61B, Fall 2011 HW #6 P. N. Hilfinger

Due: Mon., 17 October 2011

Create a directory to hold your answers. There is a skeleton for your solutions in the repository
under the URL $STAFFREPOS/hw6, and also in the directory ~cs61b/code/hw6. Put non-program
answers in a file hw6.txt. Use the usual command sequence to copy your final solution to a hw6-N

entry in your tags repository directory.

1. At first glance, it seems that the most reasonable way to estimate the time an algorithm takes
is to measure it. Each computer has an internal clock that keeps track of time (usually the number
of milliseconds or microseconds that have elapsed since a given base date) and language libraries
provide access to the clock. The Java method that accesses the clock is System.currentTimeMillis.
We’ve provided a ucb.util.Stopwatch class as part of the standard class setup in the lab. (Those
of you at home should download ~cs61b/lib/ucb.jar and put it in your Java system’s classpath.
The sources for the ucb package is in ~cs61b/src/java/classes/ucb. Both of these are in
$STAFFREPOS/software.) Read the on-line documentation for System.currentTimeMillis and
for ucb.util.StopWatch (see Tool Documentation⇒UCB Package Documentation on the class
homepage.)

The file Sorter.java in the directory contains a version of the insertion sort algorithm, which
sorts a sequence of items by moving each one in turn backwards through the sequence until it is
in the right position relative to previously sorted items. Its main method uses a command-line
argument to determine how many items to sort, and to provide an optional seed with which to
vary the contents of the random array it sorts (the same seed gives the same sequence). It fills
an array of the specified size with randomly generated values, starts a timer, sorts the array, and
prints the elapsed time when the sorting is finished. For example, the shell command sequence

java Sorter 100000

generates 100000 random doubles (in the range 0–1) and sorts them, printing the wallclock time
elapsed during sorting.

Compile Sorter and try it for a variety of sizes. The file hw6.txt, included in the hw6 directory,
contains some tables asking for approximate parameters in formulae for computing approximate
running times. The tables assumes that the time cost of Sorter is a function of N, the size of the
array sorted, and has the form

aN2 + bN + c

for some constants a, b, and c. Try to come up with approximate values for these constants (there
are “official” ways to do this sort of fitting, but we’ll be happy with some rough numbers). Put
the results in the “Sorter” line of Table I.

Now try the same exercise with the C function csort (use the command ‘gmake’ to compile
csort from csort.c; it will use the gcc compiler to do so). Put the results in the csort (-O2) line of
Table I.

Do the same with the program Sorter2.java, which is the same as Sorter, but uses an ArrayList
instead of an array. Add the results to Table I.

1

HW #6 2

The Makefile compiles csort with an optimization option (-O2) that asks the compiler to try
to compile for speed. To see the effect of this parameter, first erase the csort program (rm csort)
and then recompile with

gmake CFLAGS=

(just as written). Now determine its parameters and fill in the last line of Table I.

2. Repeat the same procedure, but on a machine with an entirely different architecture. Be
sure you have recorded which architecture you were using for Table I in the space provided. Login
(via ssh would be most convenient) to a machine with a completely different architecture and
repeat the previous experiments again, filling in Table II. The Unix command ’uname -m’ will tell
you what kind of machine you are running on. In the instructional labs, this will be either i86pc
(an Intel architecture), sun4u (Sparc), or x86 64 (a 64-bit Intel architecture, such as the ‘hive’
servers). See the List of Instructional Login Servers on the class home page to see what machines
are available in each architecture. You must recompile the C program before running on the new
machine. The two commands

gmake clean

gmake

will do so.

3. Now fill in Table III in hw6.txt, but this time, use commands of the form

java Sorter <SIZE> B

./csort <SIZE> B

etc.

The ‘B’ parameter causes the programs to use a different method to generate the data to be sorted.
Try looking at the algorithm and see if you can explain the differences between the results in

Table III and those in Table I.

4. Now consider the program Sorter3.java in hw6 files. It’s the same as Sorter2.java, except
that it uses a LinkedList rather than an ArrayList. What effect do you expect this to have on the
running time of Sorter3 and why? (Try to answer this question without empirical measurement,
giving a Θ(·) estimate.)

5. You can speed the Sorter3.java program up considerably by using ListIterator and its
operations, rather than the .get and .set methods on LinkedLists. Indeed, you should be able
to make its speed comparable to that of Sorter2. Modify Sorter3.java to accomplish this.

HW #6 3

6. [Goodrich & Tamassia] Suppose that A is an n×n array of 1’s and 0’s with the property that
all the 1’s in a row come before all the 0’s in that row. The array is huge (n > 500000), but instead
of actually being stored as a Java array, it is represented by a BitMatrix object with a method
.get(i, j), which returns Aij (i is the row, j the column). Fill in the method mostOnes(A) in the
template file BigMat.java so that it returns the index of the row of A that contains the most 1’s.
When several rows contain the largest number of 1’s, return the smaller index. Your method must
operate in O(n) time (not O(n2) time). Your program will be given a time limit that requires it
to operate in better than O(n2) time.

