
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger

Fall 2011

Project #1: A Simple Drawing Program

Due: Tuesday, 4 October 2011 at midnight

1 Overview

In these days of mice, touch screens, GUIs, and Wiis, it’s easy to forget that it is possible to
describe drawings with text. The Postscript language and its compressed, streamlined version
PDF, for example, can describe arbitrary pages of text, images, and line drawings. In this first
project, you’ll write a translator for a very simple diagram-description language into a small subset
of Postscript. You can actually display or print the results using standard software.

The details of parsing modern programming languages is really the purview of CS164 (plug)
so we’ll finesse that problem here by using Lisp as an input language (you will, however, have to
write a simple Lisp reader).

When finished, you should be able to put a program written according to the specifications of
§2 into a file INPUTFILENAME.drw, and then enter the command

java draw.Main INPUTFILENAME.drw OUTPUTFILENAME.ps

and have the program translated into a Postscript file that will produce the specified picture. In
addition,

java draw.Main FILENAME.drw

will instead actually execute the Postscript drawing (this requires some arcane machinery, but
don’t worry: we’ve done the hard work for you in the skeleton). You can use ‘-’ in place of the
name of an input or output file to refer to the standard input or standard output. Thus,

java draw.Main - -

works as a filter, reading from the standard input and writing to the standard output. Finally,
the plain command

java draw.Main

should print out a helpful summary of these commands.

1



Project #1: A Simple Drawing Program 2

2 Input

The input language for your program has a Scheme-like syntax. That is, a program consists of a
sequence of any number of S-expressions, where an S-expression is either

• An optionally signed floating-point numeral (with no exponent clause) or integer numeral,
representing a double-precision floating-point number in either case, or

• A symbol consists of a sequence of non-whitespace characters other than parentheses, semi-
colons, or double or single quotation marks, and not starting with something that might be
mistaken for a partial numeral: a period, a digit, or a ‘+’ or ‘-’ followed by a period or digit.

• A left parenthesis, followed by zero or more S-expressions, followed by a right parenthesis.

Symbols are case-sensitive (unlike most Lisp dialects). Symbols and numbers must be separated
from each other by whitespace. Other use of whitespace between is optional. Comments begin
with a semicolon and end at the next end of line.

This syntax represents programs that manipulate pictures and numbers. A picture is something
that can be drawn.

Not all S-expressions are valid in programs. The valid ones fall into several categories.

2.1 Primitive operations.

N where N is a numeral. The value of this expression is the number denoted.

X where X is a symbol. This is a variable. The value is the last value assigned to X .

(:= X E) where X is a symbol and E is an S-expression. Assigns the value of E to X .

2.2 Arithmetic.

In the following, A and B are numeric-valued expressions

(+ A B) The sum of A and B.

(- A B) The difference of A and B.

(* A B) The product of A and B.

(/ A B) The quotient of A and B.

(sin A) The sine of A degrees.

(cos A) The cosine of A degrees.

(sqrt A) The square root of A, which must be non-negative.

2.3 Creating pictures.

All expressions other than group “capture” the current values of two parameters: the line width
and the color, which the user may change using expressions described in §2.4 below. Once created,
a rectangle, circle, or line retains the values of these parameters from the time of its creation, and
they affect how it is drawn.

(rect X Y W H) A picture consisting of the outline of a rectangle whose lower-left corner is
at coordinates (X, Y ), and which has a width of W and a height of H .



Project #1: A Simple Drawing Program 3

(filledrect X Y W H) As for rect, but denotes a filled rectangle, rather than the outline of
its boundary.

(circ X Y R) A picture consisting of the outline of a circle whose center is at (X, Y ) and whose
radius is R.

(filledcirc X Y R) As for circ, but denotes a filled circle, rather than the outline of its
boundary.

(line X0 Y0 X1 Y1) A picture consisting of a line from (X0, Y0) to (X1, Y1).

(group P1 · · ·Pn) A picture consisting of P1, . . . , Pn, n ≥ 0, all of which are pictures.

2.4 Parameters.

The following expressions have the side-effects of setting certain parameters used by subsequent
picture-creation expressions. Although these expressions resemble Postscript commands (see §3),
they differ in one important way: the functions rect, filledrect, circ, filledcirc, and line

all “capture” these parameters at the time they are evaluated. Any change to the parameters after
that has no effect on previously created pictures, which, when and if they eventually get drawn,
use the parameters in effect when they were created.

(color R G B) Set the current color to (R, G, B). The arguments must be numbers between 0
and 1, inclusive. Initially, R = G = B = 0 (i.e., the initial color is black).

(linewidth W) Set the current line width to W , which must be a non-negative number. A line
width of 0 means “as thin a visible line as possible1.” The initial value of the line width is 1.

2.5 Operations on pictures.

None of the following operations are affected by the current settings of the parameters in §2.4.
Those that create new pictures copy these parameters from their inputs.

(move P X Y ) The picture resulting from moving P , a picture, X units in the x-direction and
Y units in the y-direction, non-destructively.

(rotate P D) The picture resulting from rotating P , a picture, D degrees counterclockwise
around the origin, non-destructively.

(scale P S) The picture resulting from non-destructively scaling P , a picture, by a factor of S,
a number. All lengths in P (including all distances to the origin) are multiplied by S in the
resulting picture.

(draw P) Draws P , a picture. If P is a group, then this draws each picture in the group in the
order they were listed. The order is important, since lines and filled areas are opaque, so that
it is the last one drawn over any given point that determines that point’s color (conveniently,
this is as in Postscript).

2.6 Control structures.

(for I L U E1 · · ·En) Execute statements E1 · · ·En multiple times, first with I, a variable,
set to L, an integer, then to L + 1, etc., up to and including U . Does nothing if U < L or
n = 0. Leaves I as the maximum of L and U .

1Conveniently, this is its meaning in Postscript, too.



Project #1: A Simple Drawing Program 4

3 Output

The Postscript program that you produce as output will have the following form:

%!PS-Adobe-2.0

commands

showpage

Postscript is a postfix language, meaning that each command consists of a sequence of arguments
followed by an operator, with no parenthetical grouping or punctuation. This is the same style
as a stack-based calculator or the programming language Forth. Instead of writing (3+4)*(5+6),
one writes

3 4 add 5 6 add mul

You can think of 3 as “pushing the integer value 3 on the stack” and add as “popping the last two
values off the stack, adding them, and pushing the result back on.”

Commands are in free format, meaning that operands and operators are separated from each
other by arbitrary whitespace (blanks, tabs, and newlines). A ‘%’ marks the beginning of a
comment, which runs to the next end of line. Your program may insert whitespace and comments
as you see fit (aside from the first one).

Postscript uses a coordinate system in which 1 unit is 1/72 inch (this is approximately one
point.) The origin of a page, (0, 0), is initially the lower left corner, with x coordinates increasing
to the right and y coordinate increasing upward. To draw something, one builds a path, a sequence
of lines and curves, and then either strokes it (drawing a line having the current color), or fills it
(painting the interior of the path with the current color and pattern). The Postscript interpreter
maintains a graphics state, which for our purposes consists of

• A current point (xy position), which is initially null (absent);

• A current path;

• A current color, which for our purposes consists of a 3-tuple (r, g, b), where 0 ≤ r, g, b ≤ 1
indicate the intensities of red, green, and blue light, respectively. The condition r = g = b
indicates a shade a gray, with r = g = b = 0 being black and r = g = b = 1 being white.

• A current line thickness, which indicates the thickness of the lines drawn when stroking (as
opposed to filling) a path. Lines are centered on the path.

The set of possible commands and operands is a very small subset of what full Postscript
allows. In this subset, operands are all decimal numbers (basically as in Java, including decimal
fractions and possibly trailing exponents of 10, as in 1.3e-3, which means 0.0013.

x y moveto Set the current point to (x, y).

x y lineto Add a line segment to the current path starting at the current point and going to
(x, y), which becomes the new current point. An error if there is no current point.

∆x ∆y rmoveto Set the current point to (x+∆x, y+∆y), where (x, y) is the current point, which
must be defined.

∆x ∆y rlineto Add a line segment to the current path starting at the current point, (x, y), and
going to (x + ∆x, y + ∆y), which becomes the new current point. An error if there is no
current point.



Project #1: A Simple Drawing Program 5

x y r θ1 θ2 arc Add an arc segment to the current path. The segment is the piece of a circle
with radius r and center (x, y) that runs counterclockwise, starting at an angle of θ1 degrees
counterclockwise from the positive x-axis and ending at an angle of θ2 degrees. If there is a
current point, first inserts a line segment from the current point to the beginning of the arc
(the point at θ1 degrees). Since this results in an arc with a sort of tail on it, you probably
want to avoid using this command when there is a current point in this project.

stroke Draw lines with the current line width and color over all the segments in the current path.
Set the current path to empty, and set the current point to undefined.

fill Close the current path (that is, connect the current point to the last position set by moveto

or rmoveto) and fill the interior of the current path with the current color. Set the current
path to empty and the current point to undefined. For our purposes, the concept of “interior”
probably coincides with your intuition2.

W setlinewidth Set the current line width to W . The initial value of the line width is 1.

R G B setrgbcolor Set the current color to (R, G, B).

4 Handling Errors

When the input file contains erroneous input, we’re not going to be terribly particular about what
error messages you produce, except that

• They must be your error messages. Stack traces from exceptions automatically produced
by Java aren’t acceptable. The autograder will interpret them as errors you didn’t catch.
Just because Java catches a particular error by throwing an exception doesn’t mean you are
forced to end your program with an exception. See §1.15 in A Java Reference.

• All error messages must be printed on System.err, not System.out (and certainly not in
your output file!). This is standard practice in Unix-like systems.

• All error messages must contain the literal word “error,” with any capitalization, somewhere
in their first line. This is how the autograder will know that you found some error in tests
where it is expecting one.

• Every program exits with an integer exit status, which is supposed to indicate whether
something went wrong. If the input is correct and all processing is normal, the exit status
should be 0. Otherwise, it should be something else (in our case, 1). Exiting a Java program
by simply running off the end of the main method results in an exit code of 0. To exit with
code N , use the library method System.exit(N).

Finally, we don’t require that you find every error in an erroneous input (it’s not even clear what
that means in some cases), as long as you find at least one.

5 What to Turn In

You will need to turn in all your Java files, test files, and make files. You may change any of the
code we’ve given you, as long as

2Technically, a point is in the interior of the current path if it has a nonzero winding number. The winding
number of a point is computed by taking a ray from that point to infinity (that is not tangent to any line segment
in the path) and, starting at the point with a count of 0, adding one for each time the path crosses the ray running
left to right and subtracting one each time the path crosses the ray running right to left.



Project #1: A Simple Drawing Program 6

• You don’t put any classes to the default package (that is, the directory containing the draw

subdirectory).

• java draw.Main works as described above.

• java draw.Testing runs all your JUnit tests (which, when you are finished, should all pass
by the way). Part of your grade depends on the thoroughness of your testing.

We will expect your finished programs to be workmanlike, and of course, will enforce the
mechanical style standards. Make sure all methods are adequately commented—meaning that
after reading the name, parameters, and comment on a method, you don’t need to look at the
code to figure out what a call will do. Don’t leave debugging print statements lying around. In
fact, don’t use them; learn to use the debugger (either gjdb or that of Eclipse or your favorite
Java-system vendor).

6 Advice

First, get started immediately, of course. Don’t just jump in and code, though. Make sure you
understand the specifications first, and plan out how you’re going to meet them. Figure out how
to break this problem down into small pieces, and how to implement and test them one piece at a
time. Know in detail how you’re going to do something before writing a line of Java code for it.

Read the skeleton files and understand as much as possible. Don’t allow things to remain
mysterious to you, or they’ll surely bite you at some point. We’ve put some stuff in the skeleton
files precisely to get you to ask questions and (especially) to browse the Java library documentation.
Again, however, as long as your program behaves properly, we don’t care whether you use any of
our skeleton files.

The Java library can help you. Look at the documentation of StreamTokenizer in the on-line
Java library documentation. You’ll be able to find a use for java.util.HashMap as well.

The JUnit philosophy describes a test-early-and-often attitude. You can write tests of the
overall system before you write a line of code.

Above all, it is always fair to ask for help and advice. We don’t ever want to hear about
how you’ve been beating your head against the wall over some problem for hours. If you can’t
make progress, don’t waste your time guessing or bleeding: ask. If nobody’s available to ask, do
something else (or get some sleep).


	Overview
	Input
	Primitive operations.
	Arithmetic.
	Creating pictures.
	Parameters.
	Operations on pictures.
	Control structures.

	Output
	Handling Errors
	What to Turn In
	Advice

