
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 61B P. N. Hilfinger
Fall 2012

Version Control and Homework Submission

1 Introduction

Your work in this course generally consists of producing numerous on-line documents: programs,
homework answers, test files, and so forth. As a result, there are various recurring issues to address:

• How can you protect yourself against accidents (losing a file or laptop, for example)?

• What happens if you realize that changes you’ve made to your solution don’t work, but no
longer have the previous version to go back to?

• How can you review your recent changes?

• If you work with a partner on an assignment, how do you coordinate changes that you make?

• If you work at various sites (e.g., at home and in a computer lab), how do you keep copies of
an assignment on the two systems synchronized?

• How do you hand in your assignment?

There are real-world analogues of all these questions, and there is also a common tool for answering
them: a version-control system.

A version-control system (also source-code control system or revision-control system) is a utility
for keeping around multiple versions of files that are undergoing development. Basically, it maintains
copies of as many old and current versions of the files as desired, allowing its users to retrieve old
versions (for example, to “back out” of some change they come to regret), to compare versions of a
file, to merge changes from independently changing versions of a file, to attach additional information
(change logs, for example) to each version, and to define symbolic labels for versions to facilitate later
reference. No serious professional programmer should work without version control of some kind.

Subversion, which we’ll be using this semester, is an open-source version-control system that
enjoys considerable use. The basic idea is simple: Subversion maintains repositories, each of which
is a set of versions (plus a little global data). A version is simply a snapshot of the contents of an
entire directory structure—a hierarchical collection of directories (or “folders” in the Mac and PC
worlds) that contain files and other directories. A repository’s administrator (in this class, that’s the
staff), can control which parts of the repository any given person or group has access to. Subversion

is an example of a client/server system. That is, running it requires two programs, one of which (the
server) accesses the repository and responds to requests from the other program (the client), which
is what you run. The client and server need not run on the same machine, allowing remote access to
the repository. We have one server program, which the staff will look after, and several alternatives

1

Version Control and Homework Submission 2

for the client program, depending on how you are working. In this document, we’ll describe the
standard command-line client (called svn), which you run in a shell.

The staff will maintain a Subversion repository containing subdirectories for each of you on the
instructional machines. The Subversion server program manipulates this repository and runs on
one of the instructional machines. You will be able to run the Subversion client program (svn)
either from your class account or remotely from any machine where svn is installed.

Your subdirectory will contain subdirectories of its own corresponding to the course assignments.
At any given time, you may have checked out a copy of all or part of these assignment directories
into one of your own directories (known as a working directory or working copy.) You can make
whatever changes you want (without having any effect on the repository) and then create (commit or
check in) a new version containing modifications, additions, or deletions you’ve made in your working
directory.

If you are working in a team, another member might check out a completely independent copy of
the same version you are working on, make modifications, and commit those. You may both, from
time to time, update your working directory to contain the latest committed files, including changes
from other team members. Should several of you have changed a particular file—you in a committed
revision, let us say, and others in their working copies—then the others can update their working
copies with your changes, merging in any of your changes to files you’ve both modified. After these
team members then commit the current state of their working directories, all changes they’ve made
will be available to you on request. If you attempt to commit a file that someone else has modified
and committed, then Subversion will require you to update your file (merging these committed
changes into it) before it will allow you to commit.

Should you mess something up, all the versions you created up to that point still exist unchanged
in the repository. You can simply fall back to a previous version entirely, or replace selected files from
a previous version. Of course, to make use of this facility, you must check your work in frequently.

Even though the abstraction that Subversion presents is that of numbered snapshots of entire
directory trees full of files, its representation is far more efficient. It actually stores differences between
versions, so that storing a new version that is little changed from a previous one adds little data to
the repository. In particular, the representation makes it particularly fast and cheap to create a new
version that contains an additional copy of an entire subdirectory (but in a different place and with a
different name). No matter how big the subdirectory is, the repository contains only the information
of what subdirectory in what version it was copied from. You can use these cheap copies to get the
effect of branching a project, and of tagging (naming) specific versions. These copies have other uses
as well. In particular, they allow you to import a set of skeleton files for an assignment without
significantly increasing the size of the repository.

Subversion is a reasonably complex system with many features, and past experience has shown
me that students have an uncanny ability to mess up their working copies in mysterious ways.
Therefore, I have implemented a command, hw, which “cans” a set of interactions of Subversion

that covers most of what we need for this course. You are still free, if sufficiently motivated, to use
Subversion directly (there are links to the full documentation on the course web pages), but we
won’t require it.

2 Basic Actions

Our version-control software manipulates two things:

A repository, which is maintained outside your directories and contains copies of all versions of all
your assignments that you have committed. Each of these committed versions has a revision
number in the repository. Revision numbers of your directories are increasing, but will not, in

Version Control and Homework Submission 3

general, be consecutive, since the number reflects all commits of all assignments made by all
students.

Working directories, which reside in your personal file space (on one or more machines) and
contain copies of assignments from the repository, together with local changes you have made
to these assignments.

2.1 Committing

You do all your work on your local copies—your working directories. As you do so, they will diverge
from the contents of the repositories. Periodically (which we suggest you interpret as “often”), you
reconcile your working directory with its corresponding repository directory by copying changes to
the working directory to the repository, thus creating a new version of an assignment. We call this
copying process committing (or checking in) your changes.

2.2 Updating

Sometimes, you will want to have several working copies of a single assignment. For example, you
may want to do most of your work on your laptop computer, but occasionally work on an assignment
using the instructional servers1. When you do that, you have to be sure that your working directory
reflects any changes you made while working on the other system. To this end, you must be careful
to commit changes one copy when you are finished working on that copy, and must then update the
other working directory before you begin work there. Updating a directory copies changes from the
repository to the working copy2.

2.3 Checking out copies

When the repository already contains versions of an assignment, you can start a new working directory
by copying the latest version to a directory. This process is called checking out the assignment from
the repository.

2.4 Submitting (tagging)

When your repository contains a version of an assignment that you think suitable for handing in, you
submit it by creating a copy of the entire assignment in a particular repository directory, recognized
by our submission software. In effect, you create a repository directory that names a particular
version of a particular assignment. In version-control lingo, we call such a directory copy a tag.
Once submitted, the contents of the tag don’t change. Any changes you commit to your working
directory have no effect on your submissions (but you can always create a new submission of these
new contents). The system maintains copies of all your submissions, as well as all committed versions
of your assignment.

2.5 Logs

Whenever you commit a version of an assignment, you will be asked to provide commentary on that
version, which becomes the log entry for that version. The log is part of the metadata of the repository

1Using ssh to connect to the instructional machines from your laptop counts as “using the instructional servers” for
this purpose.

2If you have modified one working copy after committing to the repository a different working copy, the updating
process is clever enough to merge the changes rather than simply overwriting the working copy that you are updating.
However, this is an imperfect process (especially when the changes overlap) and it is much safer to make sure that you
always commit when you finish working on one directory and always update when you start working on another.

Version Control and Homework Submission 4

contents—the data about the data. In the real world, logs are extremely useful. They allow changes
to be attached to explanations of the changes, including which bug reports are addressed by these
changes. The version-control software can then produce a report showing the entire change history for
a project (i.e., a real-world “assignment”) or for an individual file, complete with dates and authors.
Figure1 shows an example taken from the open-source GDB debugger project. You probably won’t
have anything so elaborate, but you should try to say something useful to remind yourself of which
committed versions to consider when trying to resurrect the previous contents of a file.

2.6 URLs

If you have installed hw on your personal computer and are working there instead of on the instruc-
tional servers, you will need to tell hw where to find the instructional repository. If necessary, hw will
ask for the URL (Uniform Resource Locator) or your instructional login, and save it for future use.
If you are using Subversion “bare” or through Eclipse, you will need to know the full URL, which
is

svn+ssh://cs61b-ta@torus.cs.berkeley.edu/LOGIN

where LOGIN is your instructional account name (cs61b-xx).
Each of your assignments will reside in a repository directory at URL

REPOS/trunk/ASSIGNMENT

where RESPOS is the URL for your respository, described above. Each submission of an assignment
will reside at URL

REPOS/tags/ASSIGNMENT-SEQ

where SEQ is a sequence number (you can have multiple submissions of the same assignment; the
sequence numbers distinguish them.) Finally, the templates for assignments reside at

svn+ssh://cs61b-ta@torus.cs.berkeley.edu/staff/ASSIGNMENT

Again, you don’t need this information if using Subversion through the hw command.

3 The ‘hw’ Command

On the instructional machines, we’ve provided the command hw, which performs a number of func-
tions. The general form of the command is

$ hw subcommand arguments

where subcommand identifies the particular function to be performed. You may abbreviate subcom-
mand with any subsequence that starts with the same letter and uniquely identifies the command.
For example, you can substitute “hw ch hw1” or “hw ck hw1” for “hw checkout hw1.”

For those of you running MacOS or Linux, you can download hw from the course web pages. It
requires that you have Python 3, Subversion, and ssh installed on your system. At the moment,
we don’t support a Windows version. If you use hw from home, you should be particularly careful to
commit changes frequently (see §3.4) and—if you move between working from your home computer
and working on the instructional machines—to update your working copy (see §3.3) whenever you
change from one to the other. This is a better way of transferring work between systems than using
scp, rsync, or PuTTy.

Version Control and Homework Submission 5

commit 5979b98b41bdda7c396caa1ccd90c07bc416d70e

Author: Joel Brobecker <brobecker@adacore.com>

Date: Sat Jun 9 12:24:29 2012 -0400

Change detach_breakpoints to take a ptid instead of a pid

Before this change, detach_breakpoints would take a pid, and then

set inferior_ptid to a ptid that it constructs using pid_to_ptid (pid).

Unfortunately, this ptid is not necessarily valid. Consider for

instance the case of ia64-hpux, where ttrace refuses a register-read

operation if the LWP is not provided.

This problems shows up when GDB is trying to handle fork events.

Assuming GDB is configured to follow the parent, GDB will try to

detach from the child. But before doing so, it needs to remove

all breakpoints inside that child. On ia64, this involves reading

inferior (the child’s) memory. And on ia64-hpux, reading memory

requires us to read the bsp and bspstore registers, in order to

determine where that memory is relative to the value of those

registers, and thus to determine which ttrace operation to use in

order to fetch that memory (see ia64_hpux_xfer_memory).

This patch therefore changes detach_breakpoints to take a ptid instead

of a pid, and then updates all callers.

One of the consequences of this patch is that it trips an assert

on GNU/Linux targets. But this assert appears to have not actual

purpose, and is thus removed.

gdb/ChangeLog:

* breakpoint.h (detach_breakpoints): pid parameter is now a ptid.

* breakpoint.c (detach_breakpoints): Change pid parameter into

a ptid. Adjust code accordingly.

* infrun.c (handle_inferior_event): Delete variable child_pid.

Update call to detach_breakpoints to pass the child ptid for

fork events.

* linux-nat.c (linux_nat_iterate_watchpoint_lwps): Remove

assert that inferior_ptid’s lwp is zero.

(linux_handle_extended_wait): Update call to detach_breakpoints.

For L607-025.

Notes:

Submitted: http://www.sourceware.org/ml/gdb-patches/2012-06/msg00486.html

Figure 1: An example of a log message for a commit. This is taken from a local development branch of the GDB

(GNU Debugger) project. The version-control system used here is git, which is also used for Linux development. The

last four lines give tracking information that refers to an internal bug-tracking system and to the public GDB repository.

This example is considerably more elaborate than anything you’ll want to write!

Version Control and Homework Submission 6

3.1 Starting an assignment: working directories

The hw command assumes that your working directories have the same names as the repository
subdirectories they are copied from, which will themselves all have the names of assignments (e.g.,
‘hw1’ or ‘proj1’)3.

For each assignment, we provide a template containing skeletons of files you will eventually submit
(although you may also have to add others). To start work on an assignment (let’s say hw1), place
yourself in the directory you’ll use to hold your work (which could be your home directory), and use
the command:

$ hw init hw1

This does several things:

1. Creates a new entry in your repository called hw1, and containing our initial template for hw1.

2. Creates a new working (sub)directory called hw1.

3. Copies the files from your hw1 repository entry into this new working directory.

You only initialize an assignment once (hw won’t let you do it again). After that, you either work on
the working hw1 directory created in step 2, or you can create another working copy of the repository
entry with the hw checkout command (§3.4).

3.2 Checking out an assignment

Once you have initialized an assignment, you can use the working directory that hw init creates.
All committed copies of work done to that directory are retained in the class repository, regardless of
what happens to your working directory. However, if you need to produce a new working directory
for an assignment (say hw1 to continue our running example) (perhaps on a different machine), you
can do so with the command:

$ hw checkout hw1

Old versions. You can use the hw checkout command to fetch any previous version of an assign-
ment that you have committed. First, use hw log to find the revision number of the version you
want (§3.10). Then fetch the desired version (let’s say revision number 42 of assignment hw1) with
the command

$ hw checkout hw1-r42

This creates a new directory named hw1-r42 containing the desired version4. To prevent accidents,
this new directory is not a working directory (that is, it is missing the hidden information that links
it back to the repository). However, by copying selectively from hw1-r42 into a working directory
for hw1, you can roll back the clock on any desired file.

3In fact, once a working directory is created, its name no longer matters (the system maintains information about
which assignment it came from inside the working directory itself). You can change the name of the working directory
if desired (using the Unix mv command, for example). We suggest, however, that you avoid this if possible.

4Revision numbers apply to the class repository as a whole; they increase whenever anybody commits to the reposi-
tory, so revision 42 might not be a revision at which you committed hw1. If so, you will instead get whatever version
of hw1 you last committed before revision 42 of the repository.

Version Control and Homework Submission 7

Retrieving submissions. The hw checkout command will also fetch assignments you have sub-
mitted (see §3.5). For example, to get a copy of submission number 2 of hw1, type

$ hw checkout hw1-2

You can use hw submissions to list all your submissions (see §3.7). Again, the resulting directory
will not be a working directory, but you can copy its contents into a working directory if desired.

3.3 Updating

To make sure that a working directory, say hw1, has the same contents as the latest repository entry,
use the command

$ hw update hw1

or, if hw1 is already your current directory, just

$ hw update

This provides a convenient way to transfer work from home to the instructional machines or vice-
versa: be sure to commit the work when finished working on one of the directories, and then run “hw
update” in the other.

The command will complain if something goes wrong, such as

• Attempting to update a directory that is not a working copy.

• Attempting to update a non-existent directory.

• Updating a directory to which you have made conflicting changes before updating from the
repository. This happens, for example, if you commit changes on your laptop, then change
some of your files on the instructional machines in places that overlap the changes you just
committed, and only then remember to update the working copy on the instructional machines.

3.4 Committing

At frequent intervals (and certainly when you pause to go do something else), you should send a new
version—a snapshot—of your working directory to the repository. It never hurts to do this. The
command

$ hw commit hw1

commits the contents of the working directory named hw1. If you are already in a working directory
for an assignment, simply use

$ hw commit

The system will ask for a log message, by opening up an editor session. Type whatever you want
and exit from the editor.

Plain Subversion commits only files that you’ve told it about, and it gets upset if you have
deleted a file without telling it that you’ve done so. The hw command will prompt you about any
such files. If you have created a new file or directory in your working directory that is not currently
in the respository (say NewFile.java), hw commit will give you a message such as

NewFile.java is untracked. Add it? [y]

Version Control and Homework Submission 8

Generally, you’ll want to answer “y” or “yes” (or simply return) to cause NewFile.java to get added
to the repository. If you have deleted a file (say BadFile.java), hw commit will ask

BadFile.java has been deleted. Remove from the repository, too? [y]

Responding ‘y’ will remove BadFile.java from the next committed version in the repository. How-
ever, since the repository contains all committed versions of your working directory, you will still be
able to recover old versions of BadFile.java (see).

After asking about these files, hw commit will perform a hw update command to make sure that
you don’t undo changes to the repository that were made previously. Finally, it will commit your
changes (creating a new version of the assignment in the repository).

There are certain files that hw does not track by default. The main ones are Java .class and
.jar files, files that end in ‘~’ or ‘#’, and files containing Eclipse metadata.

Again, the command will complain if something goes wrong. It is best to consult the staff when
this happens, because it means that you have not saved you recent work and simply pushing on will
just confuse things still further.

3.5 Submitting

To submit the assignment in a given directory (say hw1), use the command

$ hw submit hw1

or, if you are already in your hw1 working directory,

$ hw submit

The system will first commit the current directory, if necessary (see §3.4). It will tell you the name
it chose for the submission, as in:

$ hw submit

Submitting hw1-3...

Submission complete.

As usual, if you don’t see messages like this, something went wrong; don’t assume the submission
was successful.

3.6 Reverting changes

Once a file is committed for the first time and is therefore in the repository, it is said to be tracked.
After you change a tracked file in a working directory (including by deletion), but before you next
commit the directory, you can restore that file to its previous contents (that is, its contents as
of the previous commit or update). For example, if you accidentally delete or otherwise mutilate
Solver.java, you can get it back with

hw revert Solver.java

This won’t work for files you have just created and not yet committed, since the system has no prior
copy of them. Likewise, it will not restore the contents of a file from a previous revision—from before
the last commit. To do that, use the hw checkout to fetch the previous revision and then copy the
desired file from there into the working directory.

Version Control and Homework Submission 9

3.7 Listing assignments and submissions

To see a list of all your submissions of a given assignment (say hw1), use

$ hw submissions hw1

This will tell you the submission sequence numbers, dates, and times of all submissions of the assign-
ment The command

$ hw submissions

will do the same for all assignments you’ve submitted.
To list all the assignments you’ve worked on or started (and therefore committed to the repository,

but perhaps not submitted), use the command

$ hw assignments

which lists the assignments and the last time you committed each.

3.8 Status of a working directory

To see which files you’ve changed, added, or deleted relative to the last hw commit for our hw1

assignment, use the command

$ hw status hw1

or just

$ hw status

if you are already in the working directory. This will give a list of files and the status of each. For
example:

$ hw status

Files and directories that are not in the repository yet,

but will be added by ’hw commit’:

NewFile.java

tests/NewTest.data

Files you have modified, but not committed:

Main.java

Files and directories you have deleted, but not committed:

Optional.java

When you see files listed by hw status like this, it generally suggests that you have material to
commit. On the other hand,

$ hw status

No changes since last commit

means that nothing remains to be committed.
The related commands

$ svn list hw1

$ svn list

produce the same results as svn status, but in addition produce a list of other tracked files that are
unchanged.

Version Control and Homework Submission 10

$ hw diff

Modifications to files (’+’ lines are additions; ’-’ deletions):

Index: Main.java

===

--- Main.java (revision 14)

+++ Main.java (working copy)

@@ -41,10 +41,9 @@

switch (args.length) {

case 1:

- output = new PrintWriter(new Display());

+ output = new PrintWriter(new Display(true));

break;

case 2:

- waitToClose = false;

if (args[1].equals("-")) {

output = new PrintWriter(System.out);

} else {

@@ -58,6 +57,7 @@

translate(input, output);

if (waitToClose) {

System.err.printf("Type <RETURN> or <ENTER> to quit.%n");

+ System.err.printf("Type ? for help.%n");

try {

System.in.read();

} catch (IOException e) {

Figure 2: Example of hw diff.

3.9 Listing differences

The hw diff command allows you to see the changes you’ve made to a working directory since
committing it or checking it out, but have not yet committed. Without an additional argument, it
lists differences for the current directory. With an argument, it lists differences in the named directory
or file. Figure 2 shows an example of a command and resulting output. The output shows lines that
you have added to the working file (indicated by a leading ‘+’), those that you have deleted (leading
‘-’), and those you have modified (which show up as a deletion of the old line and an addition of the
new version). The listing also includes a few lines of context on either side of changes to help locate
the change (also, the lines beginning ‘@@’ indicate line numbers in the old and new versions.)

By supplying a revision number (see §3.10 for finding revision numbers), you can compare the
working directory against a revision other than the last one in the repository. For example

$ hw diff 130

compares the working directory with whatever contents were committed for revision 130. The com-
mand

$ hw diff Main.java 130

does the same for the single file Main.java.

Version Control and Homework Submission 11

3.10 Listing log information

To get a listing of the commits you’ve made to the assignment in the current directory, use the
command

hw log

which gives a listing something like this:

--

r146 | cs61b-yu | 2012-09-07 16:20:30 -0700 (Fri, 07 Sep 2012) | 10 lines

Changed paths:

M /cs61b-yu/trunk/hw1/Progs.java

Solve problem 3.

--

r142 | cs61b-yu | 2012-09-07 12:44:30 -0700 (Fri, 07 Sep 2012) | 50 lines

Changed paths:

M /cs61b-yu/trunk/hw1/Progs.java

M /cs61b-yu/trunk/hw1/HW1Test.java

Solve problems 1&2.

Add tests for same.

--

r130 | cs61b-yu | 2012-09-06 16:10:50 -0700 (Thu, 06 Sep 2012) | 2 lines

Changed paths:

A /cs61b-yu/trunk/hw1 (from /staff/hw1)

Start hw1.

--

Each commit produces an entry giving the revision number, date, time, the files changed, and
the log message.

To limit the number of log entries listed to the most recent N entries, use

hw log N

or to track entries mentioning a single file (say Progs.java), use

hw log Progs.java

or

hw log Progs.java N

for the latest N entries about Progs.java.

Version Control and Homework Submission 12

4 Summary of Basic Use

Let’s look at the entire “life cycle” of assignment hw1. Let’s assume that you group homework
directories in a single directory called hw, which you have created with

$ mkdir ~/hw # Make directory ‘hw’ in your home directory.

To start hw1, get a copy of its template:

$ cd ~/hw

$ hw init hw1 # Creates directory ~/hw/hw1

A typical basic work cycle then goes like this:

$ cd ~/hw/hw1

edit, test, debug
$ hw commit # You’ll be asked to supply a log message

edit, test, debug
$ hw commit

...

$ hw submit # This also commits, if needed

If you work from home (and have installed the hw command), you can import work from school
with

$ hw checkout hw1

This may ask you for the repository URL, which you can find by logging into your instructional
account and typing

$ echo $MYREPOS

It will be something like

svn+ssh://cs61b-ta@torus.eecs.berkeley.edu/{\it YOURLOGIN}

The same commands should work from your home account as at school (that is, when you actually
do your editing, compilation, and debugging using your own computer as opposed to using ssh to
login in remotely to the instructional machines.) When switching from home to the instructional
machines, be sure to run hw commit when done at home, and

$ cd ~/hw/hw1

$ hw update

before doing any editing on the instructional machines (likewise going in the other direction). This
will transfer your work from one location to the other.

The init, commit, and submit commands are sufficient for creating and submitting homework on
the instructional machines. For remote work, you may also need checkout and update. The other
commands in §3 allow you to compare your current work with copies of it saved or submitted to the
repository.

Version Control and Homework Submission 13

5 Using ‘hw’ at Home

The ‘hw’ command should work on Linux or MacOS systems. First, you’ll need to have ssh, Sub-
version, and Python 3 installed on your system (use Google to find out how for your system). You
can obtain hw with the command

$ scp -p YOUR LOGIN@torus.cs.berkeley.edu:/home/ff/cs61b/bin/hw DIR

where DIR is the directory where you want to store the command (a directory listed in $PATH.)
When you run hw for the first time, it will ask for your instructional login or a URL, which you
should provide (providing your login is easiest.)

In order for ‘hw’ to work, ssh must know about the SSH key that was issued with your CS61B
account. This key is the file ~/.ssh/id_rsa in your instructional account. Download that file into
your own ~/.ssh directory (probably with a different name, because you are like to already have a
key of that name.) For example, you might use the command

$ scp YOUR LOGIN@torus.cs.berkeley.edu:.ssh/id_rsa ~/.ssh/id_rsa_cs61b

Assuming you do this, you should also add the line

IdentityFile ~/.ssh/id_rsa_cs61b

to the file ~/.ssh/config, creating that file if it does not already exist. Once you’ve done this, by
the way, you should be able to use commands like ssh, scp, or rsync without having to supply a
password.

Version Control and Homework Submission 14

6 Quick Reference

Here is a quick recap of the available commands. You can get the same information with hw help.
In what follows, optional arguments are denoted with square brackets ([]), and alternatives are

separated by vertical bars (|). When a command takes an argument that can be a directory (denoted
”¡dir¿”) it refers to a working directory and, if defaulted, refers to the current directory.

Commands:

hw init ¡assignment¿ Create a fresh working directory named ¡assignment¿ containing the initial
files (if any) for the assignment of that name. Commits the working directory to your repository,
creating an entry for ¡assignment¿ (which must not have previously existed).

hw checkout ¡assignment¿ Create a fresh working directory named ¡assignment¿ containing a
copy of the latest version of ¡assignment¿ from your repository.

hw checkout ¡assignment¿-¡number¿ Create a fresh directory named ¡assignment¿-¡number¿ con-
taining a copy of the tag (submission) named ¡assignment¿-¡number¿ from the repository. This
is NOT a working copy, and cannot be committed back to the repository.

hw checkout ¡assignment¿-r¡number¿ Create a fresh directory named ¡assignment¿-r¡number¿
containing a copy of previously committed revision ¡number¿ of ¡assignment¿ from the repos-
itory. To find revision numbers for past commits, use the ’hw log’ command. The resulting
directory is NOT a working copy, and cannot be committed back to the repository.

hw update [¡dir¿] Copies any changes in the repository copy of the assignment in ¡dir¿ into ¡dir¿.
Reports any conflicts (such as files in the working directory that have been changed in a way
that differs from ho the repository version was changed).

hw revert ¡file¿ Reverts ¡file¿ to its state just after the last commit, checkout, or init. If ¡file¿ was
modified or deleted, restores its previous contents.

hw commit [¡dir¿] Copies the contents of ¡dir¿ to the repository, thus creating a new version.
First asks about any anomalies, such as files that have been added, deleted, or incompletely
merged.

hw submit [¡dir¿] Submit the contents of ¡dir¿, creating a ”tag”. First runs various checks that
the submission is complete. The directory must be the top-level directory for an assignment.

hw status [¡dir¿] List the files in ¡dir¿ that differ from the contents of the repository, indicating
which are modified, and which are not tracked (i.e., not in the repository in any version).

hw diff [¡file¿ | ¡dir¿] [¡revision number¿] Reports differences between contents of
¡file or dir¿ (default, current directory), and the last version of it that was checked out.

hw list [¡dir¿] List all files in ¡dir¿ indicating any that are modified, or are not tracked (i.e., not
in the repository in any version). This is like ’status’, but includes all files.

hw log [¡dir¿] [¡lim¿] List log entries for commits of ¡dir¿, most recent first. If ¡lim¿ is specified,
it is an integer indicating the maximum number of entries.

hw assignments Lists all the assignments you have worked on and committed to the repository,
whether or not you’ve submitted them.

hw submissions [¡assignment¿] Lists all your submissions of ¡assignment¿ in the repository, or,
if assignment is defaulted, all your submissions of all assignments.

	Introduction
	Basic Actions
	Committing
	Updating
	Checking out copies
	Submitting (tagging)
	Logs
	URLs

	The `hw' Command
	Starting an assignment: working directories
	Checking out an assignment
	Updating
	Committing
	Submitting
	Reverting changes
	Listing assignments and submissions
	Status of a working directory
	Listing differences
	Listing log information

	Summary of Basic Use
	Using `hw' at Home
	Quick Reference

