code/ | ab3/activities.txt
CS61B Lab #3

Thu Sep 15 16:41:32 2011

Pl ease finish this |lab today, preferably during the |ab period. It is due
at m dni ght tonight.

1. An graded quiz (ungraded---it’s for your use) covering
pointer-rel ated concepts.

2. Exercises with some classes fromthe Java library and their
performance. W start with an inplenmentation of a programto
print duplicated entries in a sequence, showi ng how, thanks to the
Java libraries APl (Application Programmer’s Interface), two entirely
different representations of the same data (as a linked list and as
an array) can be handl ed by exactly the same nethod.

In 2a, we show that the two representations differ considerably
in speed of execution, and how, with a little nore use of
abstraction, we can (in sonme cases) overcone the performance

difference while still using the same code for both representations.
The new abstraction is called a "list iterator", a formof "iterator",
a kind of "finger into a data structure". This part asks you to

exam ne the APl for Listlterator and find a slightly different
encodi ng that nekes fuller use of their features.

In 2b, we ask you to change the behavior of Dups2.java in a

"useful " fashion by poking around in the |ibrary docunentation

for a suitable nethod, rather than inplenenting the change conpletely
fromscratch.

2c asks for further exploration of the data structures supported
by the Java library, this time to find a faster way to | ook up things.
Again, you are to nodify Dups2 appropriately.

3. Questions frombug-submt and Piazzza indicate that sone of you could
stand a bit nore practice with the debugger, so we finally include an
exercise in using gjdb to step through and debug a procedure rel ated
to a HAR2 problem

Please fill out the quiz for today on the |ab page.

2. Collection Casses in the Java Standard Library

So far, we've seen fairly primtive types for representing lists of
t hi ngs.

* Arrays:
+ Advant ages: fast random access to itens.
+ Di sadvantages: hard to insert items or delete itens.
* Hand-made linked lists (e.g., IntList):
+ Advant ages: easy to expand, insert, delete.
+ Di sadvant ages: random access (as opposed to in-sequence access)
is slow, requires nore space (for pointers) than arrays, and
poi nter mani pul ati on can be tricky.

Both represent the same things (sequences of things), but their syntax
is very different, soit’s hard to switch fromone to the other if you
change your mind.

The Java library has types to represent collections of objects,
i ncl udi ng

* Lists (sequences) of objects: ArrayList, LinkedList.
Sets of objects: TreeSet, HashSet.
* Maps (dictionaries): TreeMap, HashMap.

all of which are in the package java.util. A *package* is a set of
(supposedly rel ated) classes and subpackages. As el sewhere in Java,
the notation ‘java.util.ArrayList’ neans "The class nanmed "Arraylist"
in the (sub)package nanmed "util" in the package naned "java".

The nanes of the classes in the three categories above reflect

i mpl ementations, but they "publicize" very simlar APIs ("Application
Programmer Interface") to the outside. Thus, it is easy to change
fromusing an ArrayList to using a LinkedList.

There are types List, Set, and Map in java.util as well. These are
Java *interfaces* that various of the classes above *inplenent*. As
we' Il see, A Java interface is an abstraction of an APl (without any

i npl ementation) that may be shared by many classes. By specifying such
an interface as the type of a variable, you get a programthat is able
to accommpdat e any of the inplenenting classes without having to
change nost of the program

For exanpl e, consider the programin Dupsl.java, which comes with
this lab. Conpile this programand execute it with

java Dupsl linked < activities.txt
and see what happens. Now try

java Dupsl arrays < activities.txt
You shoul d get identical results.

2a. Listlterators

There is a problem however. Assunming that LinkedList actually uses
linked lists (like our IntList exanples), what can you say about the

cost (the number of operations performed either by your program or

the library) in executing 'java Dupsl linked” ? Try the Unix tine commands

time java Dupsl |linked < sonme-words.txt
time java Dupsl array < some-words.txt

and conpare the results. (W’ ve also set up 'gmaeke time’ to run these and
a couple of other timngs. You might want to | ook at Makefile to how that
is done).

The program Dups2.java uses the Listlterator abstraction to get around
this problemand put the two inplenentations on a nore nearly equal
footing. The interface types Iterator and Listlterator describe
"moving fingers" that effectively point at elenents in the mddle of

one of the collection types fromthe Java library and allow a programto
nove through the collection sequentially, regardless of how the
collection is actually inplenmented. |Iterators nove only forward, and
Listlterators nove in either direction (and make sense only for Lists,
whi ch have an order). Again time the two prograns:

tine java Dups2 linked < sone-words. txt
tine java Dups2 array < sone-words.txt

(I'n trying to make sense of the result, it’'s useful to know that

Li nkedLi sts are a bit nmore sophisticated than IntLists: each item has
two pointers, one to the next and one to the previous elenment. Also,
the list itself has a pointer to both the first and | ast elenents.)

Read and understand both prograns (the Javadoc documentation we

code/ |l ab3/activities.txt Thu Sep 15 16:41:32 2011 2

assigned for this lab should be useful here). The Dups2.duplicates

nethod uses two int variables, mand n, to keep track of positions in p"" +L

the list L (and stop once we have scanned back to the position of

el enent we are checking for duplication). By making better use of the because the "+" operator on Strings, if given an operand that is a
Listlterator interface, we can renove both of these variables. non-String object, will convert it into a String by calling toString()
Rewrite Dups2.java so that duplicates does not use any variabl es other on it.

than result, pl, and p2.
4. Turn in the your |ab work
2b. Wilities e

Use svn commit to conmmt all your |lab3 files (Dups2.java and

Currently, the list of duplicate words gets printed in whatever order Natural .java at least). Check that your submission attenpt was
the words occur in the text. By adding one short line to the program successful (that is, if you don’t know how to do this, nowis a great
you can arrange for the list to be printed in sorted order. See if time to find out!).

you can find howto do this (there is a hint about where to | ook
towards the top of the file) and change Dups2.java accordingly. Wth
a bit nore searching (this time in the docunentation for

java.lang. String), you may be able to find out howto get the sort to
ignore the case of letters, instead of putting all capital letters
before all |ower-case letters.

Dupsl and Dups2 both use the .contains nmethod of Arraylist to make
sure they don’t add duplicates to results. The problemis that on

Li sts, these nmethods scan the |ist sequentially, |ooking for
duplicates. Wile this is not much of a problemfor the small inputs
we’ ve been using, it can cause difficulties with |arger ones. The
Java library provides collections that are faster for the purpose of
collecting sets of objects without duplicates. Create a new version
of Dups2 that uses a java.util.TreeSet for the variable results in the
.duplicate nmethod. However, make sure that the nethod still returns a
List<String> (which a TreeSet<String>is not). (Hint: A TreeSet is a
ki nd of Collection<String> Take a | ook through the docunentation of
ArrayList.)

3. ALittle Mre Debugging

The program natural .java gives another inplenentation of the

natural Runs nmethod you did for homework, but this tinme with Java
library Lists. Unfortunately, the program does not work, as you can
see by conpiling it (don’t forget the -g option) and executing

java Natural 1 375 46 9 10

You can probably figure this out by inspection, but try it in the
debugger. Step through the code of natural Runs, and make sure you can
see what is happening (that is, that you can execute each statenent in
turn and see the values of the variables and observe how they get
updated). Now is your chance to ask the TA if the debugger doesn’t
seemto work for you.

Wiile you're at it, stop execution of your programat the start of the

natural Runs function, and print the value of L (the paraneter to the
function). The conmand

pL

will result in an uninformative output that basically tells you that L
is some kind of list. But try

p L.toString()
This is actually a call that the debugger will execute, producing a

handy String representation of L. You can produce the same string (in the
debugger and in real Java) by typing

