
code/lab5/activities.txt Thu Sep 27 02:11:07 2012 1

CS61B Lab #5

Please finish this lab today, preferably during the lab period. It is due
at midnight tonight.

1. (Quiz) A Quick Review of Dynamic Method Selection
--

Do Quiz #0 on the lab page entry for Lab #5.

2. Scanners

In the Project #1 spec, I claim that parsing the input should be really
easy. Now’s your chance to make sure you believe that.

First, you might want to review the online documentation for the classes
java.util.Scanner, java.util.regex.Pattern, java.util.regex.Matcher, and
java.util.regex.MatchResult. The code for this lab includes a file
Matching.java, which you can use to play around with patterns. Compile
it, and run it like this:

 $ java Matching
 Some string///
 Some pattern///
 Another, two-line
 string///
 Another pattern///
 ...
 QUIT///

For each string/pattern Pair, Matching will tell whether the pattern
matches the string and what each of the pattern’s parenthesized groups
matched.

--
WARNING: Inside a Java program, you use String literals to denote
Strings that you want to use as patterns. String literals give the ’\’
character a special meaning (it is the "escape" character), so that you
actually have to write "\\" in a string literal to get a single "\".
When Java READS patterns, as is the case for the Matching program, it
does NOT treat "\" specially, so when using Matching, you do NOT double
the "\" characters (unless, that is, you want to write the pattern for a
single, literal backslash character, which is "\\").
--

Among the sentences your puzzle.Solve program will have to be able to
deal with are these two:

 <Name> is the <Occupation>.
 <Name> is not the <Occupation>.

where <Name> is any capitalized sequence of letters and <Occupation> is
any lower-case sequence of letters. The individual words in a sentence
may be separated by any non-empty amount of whitespace (blanks and tabs
only, no newlines). Likewise, multiple sentences on a line may be
separated by any amount of space.

Fill in the program ReadFacts.java supplied in this lab so that it will
read each statement from a file that is supposed to contain nothing but
blank lines and lines consisting of one or more of these complete
statements of these forms. If you are successful, the program, when run
with

 java ReadFacts SOMEFILENAME

should read all the statements in file SOMEFILENAME and print back the

sentences, one per line, with all whitespace standardized to a single
blank. Be careful not to get into an infinite loop when you reach the
end of a line. When the rest of the line does not start with a valid
sentence, have to figure out how to check that the rest of the line is
truly blank and how to get on to the next line [hint: reading the
documentation on Scanner carefully is likely to help.]

We supplied sample input and output in the files stmts.txt and stmts.out.

3. Enumerating Permutations

The project 1 write-up suggests that you can use brute force to find
solutions, which involves generating every possible matching of name,
occupation, and house color, and testing each. Let’s concentrate on the
generating part first. To keep things simple, instead of using strings
to denote names, occupations, and colors, we’ll just use integers in
some range 0..N-1. So, for example, if N = 2, we want to generate the
following four possibilities:

 PER OCC COL
1. 0 0 0
 1 1 1

2. 0 0 1
 1 1 0

3. 0 1 0
 1 0 1

4. 0 1 1
 1 0 0

For example, possibility 3 is that person 0 has occupation 1 and lives
in house 0 and person 1 has occupation 0 and lives in house 1. What
we’re doing here is generating every possible *permutation* of
occupations (0, 1) and pairing each one with every possible permuation
of colors (0, 1). We can just use the same permutation (0, 1) of the
person numbers for each possibility (why?).

So our procedure looks like this:

 set p1 to the sequence (0, ... , N-1)
 repeat:
 set p2 to the sequence (0, ... , N-1)
 repeat:
 test whether matching occupations p1 and houses p2
 with people (0,...N-1) is legal.
 if we are at the last permutation of p2:
 break
 else:
 set p2 to its next permutation
 if we are at the last permutation of p1:
 break
 else:
 set p1 to its next permutation

This leaves the question of how to find a "next permutation" of the
elements of a sequence (an array or list).

Here’s one method, in the abstract, to get the next permutation of an
an array A of length N. In the following, k and v are integer variables and
S is a set of integers. The routine returns true and permutes A if it
finds a next permutation, and returns false and does not change A if
there is no next permutation. The "smallest" or "first" permutation of
A is the sequence of integers 0 to N-1 in ascending order.

next_permutation(A):

code/lab5/activities.txt Thu Sep 27 02:11:07 2012 2

 k = N-1
 S = { }
 while k >= 0:
 if S contains a value larger than A[k]:
 v = the smallest member of S that is larger than A[k]
 remove v from S
 insert A[k] in S
 A[k] = v
 A[k+1:N-1] = the values in S in ascending order.
 return true
 else:
 insert A[k] in S
 k -= 1
 return false

See if you can turn this abstract algorithm into reality in the file
Perms.java.

APPENDIX: Summary of Scanner and Related Classes
--

[This is here for reference, in case it’s useful. Actually, it’s left
over from last year. It’s not part of the lab.]

A1. More on Scanners

The class ‘java.util.Scanner’ gives you a way to read substrings of text
("tokens") sequentially from a stream of text that is furnished to the
Scanner by its constructor. Typically, the stream of text comes from a
file or from a terminal, but there are ways to convert any source of
characters into a stream that a ‘Scanner’ can process.

One constructor accepts an ‘InputStream’---a stream of bytes (8-bit
characters). Since ‘System.in’, which is normally the _standard
input_ stream to your program, is a kind of ‘InputStream’ (that is,
its type is a subtype of ‘InputStream’), you can write

 java.util.Scanner inp = new java.util.Scanner(System.in);

to get something that scans the input from your terminal. (Normally,
of course, you’d put

 import java.util.Scanner;

at the beginning of your source file and just write ‘Scanner’ instead
of ‘java.util.Scanner’).

The simplest uses of ‘Scanners’ treat the input stream as a sequence
of tokens separated by text that matches a _delimiter pattern_. By
default, the delimiter pattern matches stretches of whitespace
(blanks, tabs, newlines, carriage returns). Here are some of the
common ‘Scanner’ methods on these token streams (assume that ‘inp’ is
the ‘Scanner’ defined above):

* ‘inp.hasNext()’ is true iff there is another token (that is,
 something other than a delimiter) before the end of the input.

* ‘inp.next()’ returns the next token, and advances ‘inp’ past it.

* ‘inp.hasNextInt()’ is true iff ‘inp.hasNext()’ and the next token
 has the syntax of a (possibly signed) decimal numeral.

* ‘inp.nextInt()’ does a ‘inp.next()’ and then parses the token into
 an ‘int’.

* Likewise, there are ‘inp.hasNextDouble()’, which returns ‘double’
 values, and several other similarly named methods for other
 types.

* ‘inp.hasNextInt(RADIX)’ is true iff the next token exists and has
 the syntax of a (possibly signed) base-RADIX numeral.

* ‘inp.nextInt(RADIX)’ reads the next token as a base-RADIX numeral.

* ‘inp.hasNextLine()’ is true iff there is any more input.

* ‘inp.nextLine()’ returns the next line of input (that is, everything
 up to, but not including, the next end-of-line character, or the
 end of the input if there isn’t an end-of-line at the end). It
 then positions ‘inp’ past the end-of-line character. Thus, it
 differs from the other ‘next’ methods in that it uses a different
 delimiter (end of line instead of whitespace).

Another constructor gives you a ‘Scanner’ that uses a ‘String’ as its
source of characters:

 Scanner inp = new Scanner("Hello world!\nMy name is Jack.\n");
 while (inp.hasNext())
 System.println(inp.next ());

prints

 Hello
 world!
 My
 name
 is
 Jack.

A2. Patterns
----=-------

This section is just a description of Patterns and Matchers. There’s
nothing to do here; it’s all reference

A2a. The Pattern type and pattern Strings

A ‘Pattern’ (full name ‘java.util.regex.Pattern’) describes a set of
‘Strings’ that it is said to _match_. Although they are sometimes
called _regular expressions,_ Java ‘Patterns’ are actually much more
powerful than formal regular expressions (which you may encounter
later in upper-division CS courses).

The term "pattern" refers both to a Java object of type ‘Pattern’ and
to a string that _denotes_ a pattern. For example, the pattern string
"(jack|jill) went (up|down) the hill" denotes a pattern that matches
any of "jack went up the hill", "jack went down the hill", "jill went
up the hill" or "jill went down the hill". Some Java functions will
take such a pattern string directly and match things with it. You can
also "compile" the string into an official Java ‘Pattern’ like this:

 Pattern jackOrJill = Pattern.compile("(jack|jill) went (up|down) the hill");

and subsequently use ‘jackOrJill’ to match with. This latter choice
is useful when you intend to reuse a pattern many times, since Java’s
internal representation of ‘Pattern’ is "pre-digested" and requires
less execution time to interpret.

There is an annoying problem with Java Patterns. Their syntax is
borrowed from that of numerous other languages with a similar feature
(notably, Perl). Because they are not built into the language kernel,

code/lab5/activities.txt Thu Sep 27 02:11:07 2012 3

Java "re-tasked" Strings to serve as descriptions of Patterns. The
traditional syntaxes for Pattern-like things use "\" as one of the
meaningful characters. Unfortunately, it already HAS a meaning in
Java String literals as an escape character. So, confusingly,
wherever we say that a certain Pattern has a ’\’ in it, the
corresponding Java String literal has "\\", since that’s how you
denote a (single) ’\’ in a String literal. So, where we would write
/\d+/ in Perl or r’\d+’ in Python, in Java, we write "\\d+". Believe
me, it is normal to be confused at first.

The full pattern language is quite rich, and is documented under
‘java.util.regex.Pattern’ in the on-line Java library documentation.
Here are just a few:

 * Most characters (letters, digits, most punctuation) simply match
 themselves.
 * A period (".") matches any character other than (usually)
 newline. To get "." to match newline as well, include ’‘(?s)’’
 at the beginning of your pattern. It matches the empty string,
 but causes ’.’ to match everything thereafter.
 * A sequence such as "[abe]" denotes a _character class_, in this
 case, "any of the (single) characters ’a’, ’b’, or ’e’". As a
 shorthand, you can represent a range of characters with a hyphen,
 as in "[abd-qs-z]" to mean ’a’, b’, ’d’ through ’q’, and ’s’
 through ’z’.
 * A sequence such as "[^abe]" matches any single character
 other than those listed.
 * There are several useful two-character shorthands for certain
 character classes. ’\d’ is short for ’[0-9]’, ’\s’ is short for
 [\t\n\r] (that is, for whitespace). Unfortunately, in order to
 put an actual ’\’ in a string, you must double it. Thus, a
 pattern that matches any two-digit string would be written as the
 string literal ‘"\\d\\d"’.
 * If ‘P’ represents a pattern, then ‘P*’ represents "0 or more
 repetitions of P". Thus, ‘x*’ matches the empty string, "x",
 "xx", "xxx", etc. ‘[a-c]*’ matches "", "a", "ab", "aa", "bac",
 "ccc", etc. Since "‘*’" binds most strongly, so "ab*" means "one
 ’a’ followed by 0 or more ’b’s". To get the effect of "0 or more
 ’ab’s", use ‘(ab)*’
 * Similarly, P+ means "1 or more Ps."
 * ‘P?’ denotes an optional P (0 or 1 Ps).
 * If P and Q denote patterns, then
 ‘P|Q’ denotes "a P or a
 Q" (as illustrated earlier in this section).
 * ‘(P)’ denotes the same thing as P.
 It also serves to define a _group_, a subpattern whose match
 you can retrieve later.
 * ‘(?:P)’ also denotes the same thing as P, but it does not define
 a group that you can retrieve later.
 * Following a ’‘*’’, ’‘+’’, or ’‘?’’ with a ’‘?’’ creates a "non-
 greedy" version, meaning that it matches as few characters as
 possible to make the match work. This affects what part
 of a string gets matched, but usually not whether a
 string gets matched. For example, if you are matching the string
 "1, 2, 3, 4" against the pattern string "(\\d).*(\\d).*", the
 first group will match ’1’ and second will match ’4’. But with
 the pattern string "(\\d).*?(\\d).*", the second group will match
 ’2’.
 * _Boundary matchers_ match the empty string, but only at certain
 places. ‘^’ and ‘$’ match the beginning and end of a string,
 respectively (but see below). ‘\G’ matches the point at which
 the last match ended. ‘\b’ matches a "word boundary", a place
 where a word begins or ends.
 * The sequence ‘(?m)’ always matches the empty string, but has a
 side effect of causing ‘^’ and ‘$’ to match the beginnings and
 ends of lines as well as of entire strings.
 * The two-character escape sequences ‘\?’, ‘*’, ‘\.’, ‘\+’, etc.,
 match the character after the backslash, ignoring their special

 significance. Thus, the pattern ‘who\?’ matches the string
 "who?", and would be written in a program as the string literal
 "who\\?".

A2b. Simple pattern matching operations

The most straightforward way to use pattern matching is probably the
‘String.matches’ method. If aString is some string and aPattern is a
string that denotes a pattern, then ‘aString.matches(aPattern)‘ is
true iff the aPattern matches all of aString. So, for example,

"The first thing we say is ’Hello, world’".matches (".*Hello.*")

is true.

A2c. Groups

The Java library gives much more than simple yes/no pattern matching,
although nothing with such simple syntax. In particular, you often
want to extract pieces of aString that match subpatterns of
aPattern, Suppose, for example, that you want to see if your string
matches the syntax of a Point "(X, Y)" and at the same time extract
the X and Y values, which are supposed to be integers. Here’s a
method that does so, given a string printedPoint:

 import java.util.regex.Matcher;
 import java.util.regex.Pattern;
 ...

 void describePoint (String printedPoint) {
 /** A Matcher for printedPoint against the pattern
 * \((-?\d+),\s*(-?\d+)\)
 */
 Matcher mat =
 Pattern.compile("\\((-?\\d+),\\s*(-?\\d+)\\)")
 .matcher(printedPoint);
 if (mat.matches()) {
 System.out.printf("X coordinate is %s; Y coordinate is %s.%n",
 mat.group (1), mat.group (2));
 } else {
 System.out.printf ("Not a valid Point.");
 }
 }

First, we compile a pattern and then create from it a ‘Matcher’, which
incorporates the ‘Pattern’ and a string to apply it to. The
‘.matches’ method matches the given string to the given pattern and
saves the portions that match the two parenthesized portions.
Finally, the ‘.group’ method returns the parts of printedPoint that
match the parenthesized portions of the pattern (numbering from 1 this
time). ‘mat.group(0)’ is what matches the entire pattern. In this
example, we had to indicate that the outer parentheses were real
parentheses, and not grouping syntax; for that, we put a backslash in
front of each (written in string literals as two backslashes).

Sometimes, a group won’t be matched to anything in a particular
application of ‘.matches()‘. It is then null:

 Matcher mat = Pattern.compile("x=(\\d+)|y=(\\d+)").matcher ("x=15");
 mat.matches();
 if (mat.group(1) != null)
 System.out.printf("The value of x is %s%n", mat.group(1));
 if (mat.group(2) != null)
 System.out.printf("The value of y is %s%n", mat.group(2));

This will print "The value of x is 15" and the second printf call will

code/lab5/activities.txt Thu Sep 27 02:11:07 2012 4

not be executed.

A2d. Non-capturing groups

Sometimes, you need to group some text together in a pattern, but
aren’t interested in using ‘.group’ to fetch what it matches. That’s
the purpose of the ’‘(?:...)’’ syntax in patterns. Such parenthesized
segments are ignored by ‘group()’. For example,

 String str = "15 greater 6";
 Matcher mat = Pattern.compile("(\\d+)(?:\\s|greater)*(\\d+)").matcher(str);
 if (mat.matches()) {
 System.out.printf("First number is %s and second is %s%n",
 mat.group(1), mat.group(2));
 }

prints "First number is 15 and second is 6".

A3. Patterns and Scanners

There are a few more methods in the ‘Scanner’ class that allow one
to match or search for patterns in the input. Assume that ‘inp’
is a ‘Scanner’ in the following:

 * ‘inp.useDelimiter (DELIM)’
 causes ‘inp’ to use the pattern DELIM (either a string or a
 ‘Pattern’) as the separator between the tokens returned by
 ‘.next()’ and similar methods. For example, after
 ‘inp.useDelimiter(",")’ tokens will be separated by single
 commas, and the input

 dog, cat,,
 pretzel sticks

 will result in the tokens ‘"dog"’, ‘" cat"’, ‘""’, and
 ‘"\npretzel sticks\n"’.

 * ‘inp.findWithinHorizon (PATN, 0)’
 reads the rest of the input (ignoring the delimiter entirely)
 looking for the first string that matches PATN (a string or
 ‘Pattern’). Replacing 0 by some integer LIM limits the search to
 the next LIM characters of input. This returns the matching
 string or ‘null’ if there is no match. Also, if the pattern
 contains parenthesized groups, you may retrieve them with
 ‘inp.match().group(NUM)’.

WARNING: ‘findWithinHorizon’ is tricky to use, especially
interactively. If the desired pattern is not in the input, it will
read the entire input, up to the end of file, trying to find it.
If you happen to be reading from the terminal when this happens, your
program will appear to hang, gobbling up all input you type in, until
you signal end-of-file to the shell or terminate your program.

