code/ | ab5/activities.txt Thu Sep 27 02:11:07 2012 1

CS61B Lab #5 sentences, one per line, with all whitespace standardized to a single
bl ank. Be careful not to get into an infinite | oop when you reach the

Pl ease finish this |lab today, preferably during the |ab period. It is due end of a line. Wen the rest of the line does not start with a valid

at m dni ght tonight. sentence, have to figure out howto check that the rest of the line is
truly blank and how to get on to the next line [hint: reading the

1. (Quiz) A Quick Review of Dynam c Method Sel ection docunent ati on on Scanner carefully is likely to help.]

We supplied sanple input and output in the files stnts.txt and stnts.out.
Do Quiz #0 on the |ab page entry for Lab #5.

3. Enurerating Pernutations
2. Scanners
----------- The project 1 wite-up suggests that you can use brute force to find

sol utions, which involves generating every possible matching of nane,

In the Project #1 spec, | claimthat parsing the input should be really occupation, and house color, and testing each. Let’'s concentrate on the
easy. Now s your chance to make sure you believe that. generating part first. To keep things sinple, instead of using strings
to denote nanes, occupations, and colors, we'll just use integers in
First, you might want to review the online docunentation for the classes some range 0..N-1. So, for exanple, if N=2, we want to generate the
java.util.Scanner, java.util.regex.Pattern, java.util.regex.Mtcher, and followi ng four possibilities:
java.util.regex. MatchResult. The code for this lab includes a file
Mat chi ng. j ava, which you can use to play around with patterns. Conpile PER OCC COL
it, and run it like this: 1. 0 0 0
1 1 1

$ java Matching e

Some string/// 2. 0 0 1

Sone pattern/// 1 1 0

Anot her, two-line e

string/// 3. 0 1 0

Anot her pattern/// 1 0 1

QI T/ 4. 0 1 1

1 0 0

For each string/pattern Pair, Matching will tell whether the pattern
mat ches the string and what each of the pattern’s parenthesized groups For exanple, possibility 3 is that person 0 has occupation 1 and |ives
mat ched. in house 0 and person 1 has occupation O and lives in house 1. What

we're doing here is generating every possible *pernutation* of
-- occupations (0, 1) and pairing each one with every possible pernuation

WARNI NG | nside a Java program you use String literals to denote of colors (0, 1). W can just use the same permutation (0, 1) of the
Strings that you want to use as patterns. String literals give the "\’ person nunbers for each possibility (why?).
character a special neaning (it is the "escape" character), so that you
actually have to wite "\\" in a string literal to get a single "\". So our procedure | ooks |ike this:
Wien Java READS patterns, as is the case for the Matching program it
does NOT treat "\" specially, so when using Matching, you do NOT double set pl to the sequence (0, ... , N1)
the "\" characters (unless, that is, you want to wite the pattern for a repeat :
single, literal backslash character, which is "\\"). set p2 to the sequence (0, ... , N1)
-- repeat:
test whether matching occupations pl and houses p2
Anpong the sentences your puzzle.Solve programwi |l have to be able to with people (0,...N1) is legal.
deal with are these two: if we are at the last pernutation of p2:
br eak
<Name> is the <Qccupation>. el se:
<Name> is not the <Qccupation>. set p2 to its next pernutation
if we are at the last pernutation of pl:
where <Nane> is any capitalized sequence of letters and <Cccupation> is br eak
any | ower-case sequence of letters. The individual words in a sentence el se:
may be separated by any non-enpty ampunt of whitespace (bl anks and tabs set pl to its next pernutation
only, no newines). Likew se, multiple sentences on a line may be
separated by any ampbunt of space. This | eaves the question of howto find a "next pernutation" of the
el enents of a sequence (an array or list).
Fill in the program ReadFacts.java supplied in this lab so that it wll
read each statement froma file that is supposed to contain nothing but Here’s one nethod, in the abstract, to get the next pernutation of an
bl ank I'ines and lines consisting of one or nore of these conplete an array A of length N In the following, k and v are integer variables and
statements of these forms. |f you are successful, the program when run Sis a set of integers. The routine returns true and permutes Aif it
with finds a next pernutation, and returns fal se and does not change A if
there is no next permutation. The "smallest" or "first" pernutation of
j ava ReadFacts SOVEFI LENAMVE A is the sequence of integers O to N1 in ascending order.

shoul d read all the statements in file SOVEFI LENAME and print back the next _pernutation(A):

code/ | ab5/activities.txt Thu Sep 27 02:11:07 2012 2
k = N1 * Likew se, there are 'inp.hasNextDouble()’, which returns ‘double’
S={1} val ues, and several other similarly named nethods for other
while k >= 0: types.
if Scontains a value larger than Al k]:
v = the snallest nenber of S that is larger than AlK] * ‘inp.hasNextInt(RADI X)' is true iff the next token exists and has
remove v fromS the syntax of a (possibly signed) base-RADI X nureral .
insert AlK] in S
A k] =v * ‘inp.nextInt(RADI X)' reads the next token as a base-RAD X nuneral .
Al k+1:N-1] = the values in S in ascending order.
return true * ‘inp.hasNextLine()’ is true iff there is any nore input.
el se:
insert Alk] in S * ‘inp.nextLine()’ returns the next line of input (that is, everything
k -=1 up to, but not including, the next end-of-line character, or the
return false end of the input if there isn’t an end-of-line at the end). It
then positions ‘inp’ past the end-of-line character. Thus, it
See if you can turn this abstract algorithminto reality in the file differs fromthe other ‘next’ methods in that it uses a different
Perms. j ava. delimter (end of line instead of whitespace).

Anot her constructor gives you a ‘Scanner’ that uses a ‘String’ as its
source of characters:
APPENDI X: Summary of Scanner and Rel ated C asses
-- Scanner inp = new Scanner("Hello world!'\nMy name is Jack.\n");
while (inp.hasNext())

[This is here for reference, in case it’s useful. Actually, it's left System println(inp.next ());
over fromlast year. It’s not part of the lab.]

prints
Al. More on Scanners
-------------------- Hell o

wor | d!

The class ‘java.util.Scanner’ gives you a way to read substrings of text %%
("tokens") sequentially froma streamof text that is furnished to the nane
Scanner by its constructor. Typically, the streamof text comes froma is
file or froma ternminal, but there are ways to convert any source of Jack.
characters into a streamthat a ‘Scanner’ can process.
One constructor accepts an ‘lnputStrean ---a stream of bytes (8-bit A2. Patterns

characters). Since ‘Systemin’, which is nornally the _standard]

input_ streamto your program is a kind of ‘InputStreami (that is,

its type is a subtype of ‘InputStreani), you can wite This section is just a description of Patterns and Matchers. There’'s
nothing to do here; it's all reference

java.util.Scanner inp = new java.util.Scanner(Systemin);

A2a. The Pattern type and pattern Strings

to get sonething that scans the input fromyour terminal. (Normally, e

of course, you' d put
A ‘Pattern’ (full nane ‘java.util.regex.Pattern’) describes a set of

inport java.util.Scanner; “Strings’ that it is said to _match_. Although they are sonetines
called _regul ar expressions,_ Java ‘Patterns’ are actually much nore
at the beginning of your source file and just wite ‘Scanner’ instead power ful than formal regul ar expressions (which you may encounter
of ‘java.util.Scanner’). later in upper-division CS courses).
The sinplest uses of ‘Scanners’ treat the input streamas a sequence The term"pattern" refers both to a Java object of type ‘Pattern’ and
of tokens separated by text that natches a _delimter pattern_. By to a string that _denotes_ a pattern. For exanple, the pattern string
default, the delimter pattern matches stretches of whitespace "(jack|jill) went (up|down) the hill" denotes a pattern that matches
(bl anks, tabs, new ines, carriage returns). Here are sonme of the any of "jack went up the hill", "jack went down the hill", "jill went
common ‘ Scanner’ methods on these token streans (assume that ‘inp’ is up the hill"™ or "jill went down the hill". Some Java functions wll
the ‘ Scanner’ defined above): take such a pattern string directly and match things with it. You can
also "conpile" the string into an official Java ‘Pattern’ like this:
* ‘inp.hasNext()’ is true iff there is another token (that is,
sonething other than a deliniter) before the end of the input. Pattern jackOrJill = Pattern.conpile("(jack|jill) went (up|down) the hill");
* ‘inp.next()’ returns the next token, and advances ‘inp’ past it. and subsequently use ‘jackOrJill’ to match with. This latter choice
is useful when you intend to reuse a pattern many tinmes, since Java's
* ‘inp.hasNextInt()’ is true iff ‘“inp.hasNext()’' and the next token internal representation of ‘Pattern’ is "pre-digested" and requires
has the syntax of a (possibly signed) decimal nuneral. | ess execution time to interpret.
* ‘inp.nextint()’ does a ‘inp.next()’ and then parses the token into There is an annoying problemw th Java Patterns. Their syntax is
an ‘int’. borrowed fromthat of nunerous other |anguages with a simlar feature

(notably, Perl). Because they are not built into the |anguage kernel,

code/ | ab5/activities.txt

Java "re-tasked" Strings to serve as descriptions of Patterns. The
traditional syntaxes for Pattern-like things use "\" as one of the
meani ngful characters. Unfortunately, it already HAS a neaning in
Java String literals as an escape character. So, confusingly,
wherever we say that a certain Pattern has a '\’ init, the
corresponding Java String literal has "\\", since that's how you

denote a (single) "\’ in a String literal. So, where we would wite
/\d+/ in Perl or r’\d+ in Python, in Java, we wite "\\d+". Believe
me, it is normal to be confused at first.

The full pattern |anguage is quite rich, and is docunented under
‘java.util.regex.Pattern’ in the on-line Java |library docunmentation.

Here

*

are just a few

Most characters (letters, digits, npst punctuation) sinply nmatch
t hensel ves.
A period (".") matches any character other than (usually)

new ine. To get " to match newine as well, include ' (?s)’’
at the beginning of your pattern. |t natches the enpty string,
but causes ’ to match everything thereafter.

A sequence such as "[abe]" denotes a _character class_, in this
case, "any of the (single) characters 'a, 'b’, or 'e’". As a
shorthand, you can represent a range of characters with a hyphen,
as in "[abd-gs-z]" to nean "a’, b’, 'd through 'q, and 's’
through "z'.

A sequence such as "[”abe]" nmatches any single character

<enpot her than</enr those |isted.

There are several useful two-character shorthands for certain
character classes. ’'\d is short for '[0-9]', '\s’ is short for
[\t\n\r] (that is, for whitespace). Unfortunately, in order to
put an actual '\’ in a string, you must double it. Thus, a
pattern that matches any two-digit string would be witten as the
string literal ‘“"\\d\\d"'.

If “P represents a pattern, then ‘P*’ represents "0 or nore

repetitions of P'. Thus, ‘x*’ nmatches the enpty string, "x",
"xx", "xxx", etc. ‘[a-c]* matches "", "a", "ab", "aa", "bac",
"ccc", etc. Since "'*'" binds nobst strongly, so "ab*" nmeans "one
"a’ followed by O or nore 'b’s". To get the effect of "O or nore

"ab’s", use ‘(ab)*’

Simlarly, P+ means "1 or nore Ps."

‘P?’ denotes an optional P (0 or 1 Ps).

If P and Q denote patterns, then

‘P|Q denotes "a P or a

Q' (as illustrated earlier in this section).

‘(P)’ denotes the sanme thing as P.

It also serves to define a _group_, a subpattern whose match
you can retrieve |ater.

‘(?:P)’ also denotes the same thing as P, but it does not define
a group that you can retrieve later.

Following a’'**'’, "*+ ", or "*?"’ with a’'*?’ creates a "non-
greedy" version, neaning that it matches as few characters as
possible to make the match work. This affects <enpwhat </ en> part
of a string gets matched, but usually not <enpwhether</enr a
string gets matched. For exanple, if you are natching the string
"1, 2, 3, 4" against the pattern string "(\\d).*(\\d).*", the
first group will match 1" and second will match 4. But with
the pattern string "(\\d).*?(\\d).*", the second group will natch
12,

Boundary matchers match the enpty string, but only at certain

places. ‘7' and ‘$ match the beginning and end of a string,
respectively (but see below). ‘\G matches the point at which
the last match ended. ‘\b’ natches a "word boundary", a place

where a word begins or ends.

The sequence ‘ (?m)’ always natches the enpty string, but has a

side effect of causing ‘'~ and ‘$ to match the beginnings and

ends of lines as well as of entire strings.

The two-character escape sequences ‘\?', ‘*' ‘“\.’ ‘“\+ etc.,
match the character after the backslash, ignoring their special

Thu Sep 27 02:11:07 2012

significance. Thus, the pattern ‘who\? matches the string
"who?", and would be witten in a programas the string literal
"who\ \ ?".

A2b. Sinple pattern matching operations

The npbst straightforward way to use pattern matching is probably the
“String. mtches’ method. |f aString is some string and aPattern is a
string that denotes a pattern, then *aString. natches(aPattern)’ is
true iff the aPattern natches all of aString. So, for exanple,

"The first thing we say is "Hello, world ".matches (".*Hello.*")

is true.

The Java library gives nuch nore than sinple yes/no pattern matching,
al though nothing with such sinple syntax. In particular, you often
want to extract pieces of aString that match <enpsubpatterns</enr of
aPattern, Suppose, for exanple, that you want to see if your string
mat ches the syntax of a Point "(X, Y)" and at the sane tine extract
the X and Y val ues, which are supposed to be integers. Here's a
nethod that does so, given a string printedPoint:

import java.util.regex. Matcher;
inport java.util.regex.Pattern;

voi d describePoint (String printedPoint) {
/** A Matcher for printedPoint against the pattern

* V((-?2\d+),\s*(-?2\d+)\)
*/
Mat cher mat =

Pattern.conpile("\\ ((-?2\\d+),\\s*(-2A\d+)\\)")
. mat cher (printedPoint);
if (mat.matches()) {

Systemout.printf("X coordinate is %; Y coordinate is %.%",

mat. group (1), mat.group (2));
} else {
Systemout.printf ("Not a valid Point.");

First, we conpile a pattern and then create fromit a ‘Matcher’, which
incorporates the ‘Pattern’ and a string to apply it to. The

‘. matches’ method matches the given string to the given pattern and
saves the portions that match the two parenthesized portions.

Finally, the ‘.group’ nethod returns the parts of printedPoint that
mat ch the parenthesized portions of the pattern (nunmbering from1 this
time). ‘mat.group(0)’ is what matches the entire pattern. In this
exanpl e, we had to indicate that the outer parentheses were real
parent heses, and not grouping syntax; for that, we put a backslash in
front of each (witten in string literals as two backsl ashes).

Sonetimes, a group won't be matched to anything in a particul ar
application of ‘.matches()‘. It is then null:

Mat cher mat = Pattern.conpil e("x=(\\d+)|y=(\\d+)").matcher ("x=15");
nmat . mat ches();
if (mat.group(l) !'= null)
Systemout . printf("The value of x is %%", nat.group(l));
if (mat.group(2) != null)
Systemout.printf("The value of y is %%", mat.group(2));

This will print "The value of x is 15" and the second printf call wll

code/ | ab5/activities.txt Thu Sep 27 02:11:07 2012

not be executed.

A2d. Non-capturing groups

Sonetimes, you need to group sonme text together in a pattern, but
aren’t interested in using ‘.group’ to fetch what it matches. That's
the purpose of the '*(?:...)"" syntax in patterns. Such parenthesized
segnents are ignored by ‘group()’. For exanple,

String str = "15 greater 6";
Mat cher mat = Pattern.conpile("(\\d+)(?:\\s|greater)*(\\d+)").matcher(str);
if (mat.matches()) {
Systemout.printf("First nunber is % and second is %%",
mat . group(1), mat.group(2));
}

prints "First number is 15 and second is 6".

A3. Patterns and Scanners

There are a few nore nethods in the ‘Scanner’ class that allow one
to match or search for patterns in the input. Assune that ‘inp’
is a ‘Scanner’ in the follow ng:

* ‘inp.useDelimter (DELIM’
causes ‘inp’ to use the pattern DELIM (either a string or a
‘Pattern’) as the separator between the tokens returned by
‘.next()’ and simlar nmethods. For exanple, after
‘inp.usebDelimter(",")’ tokens will be separated by single
commas, and the input

dog, cat,,
pretzel sticks

will result in the tokens ‘"dog"', ‘" cat"’', ‘""', and
‘"\npretzel sticks\n"'.

*

inp.findWthinHorizon (PATN, 0)’

reads the rest of the input (ignoring the delimter entirely)
looking for the first string that matches PATN (a string or
‘Pattern’). Replacing 0 by sonme integer LIMIinmts the search to
the next LIMcharacters of input. This returns the natching
string or ‘null’ if there is no match. Also, if the pattern
contai ns parenthesized groups, you may retrieve themwth
“inp.match().group(NUM’ .

WARNING ‘ findWthinHorizon' is tricky to use, especially
interactively. |If the desired patternis not in the input, it wll
read the entire input, up to the end of file, trying to find it.

I f you happen to be reading fromthe term nal when this happens, your
programwi || appear to hang, gobbling up all input you type in, until
you signal end-of-file to the shell or term nate your program

