
code/lab9/activities.txt Mon Nov 05 02:40:48 2012 1

CS61B Lab #9

In this lab, we mostly ask you to play around with some data structures we’ve
been looking at in lecture, and answer a few questions (add them to the file
lab9.txt).

1. Hashing

Be sure you’ve read Chapter 7 of _Data Structures (Into Java)_
and looked at the notes from Lecture #26.

The Java library allows any kind of reference object to be stored in a
hash table. To make this work, it makes use of the following two methods
defined in java.lang.Object

 public native int hashCode();
 // "Native" means "implemented in some other language".

 public boolean equals(Object obj) {
 return (this == obj);
 }

Since all Objects have at least these default implementations, all
objects may be stored in and retrieved from hash tables.

When defining a new type, you may freely override both methods.
However, they are related---when you override one, you must should
generally override the other, or uses of hash tables will break, as
we’ll see. You might want to find the documentation of the Java
library class java.lang.Object and look up the comments on these two
methods.

1.1 Goodness of hashing functions

The file HashTesting.java contains various routines and classes for
testing and timing hash tables. Compile this file in your directory.
The file contains a wrapper class String1, which simply contains a
String and returns via the toString method. The .equals method on
this class compares the Strings in the two comparands. The hashCode
method is an adaptation of that used in the real String class. It
gives you the ability to "tweak" the algorithm by choosing to have the
hashCode method look only at some of the characters. Take a look at
class String1, and especially at its hashCode method.

The test

 java HashTesting test1 $MASTERDIR/lib/words 1

will read a list of about 100000 words from $MASTERDIR/lib/words (a
small dictionary taken from a recent Ubuntu distribution), store them
in a hash table (the Java library class HashSet), and then check that
each is in the set. It times these last two steps and reports the
time.

The argument 1 here causes it to use the same hashing function for the
strings as Java normally does for java.lang.String. If you run

 java HashTesting test1 $MASTERDIR/lib/words 2

the hash function looks only at every other character, presumably making it
faster to compute.

Try this command with various values of the second parameter. Explain why
the timings change as they do in lab9.txt, question #1.

1.2 The effect of data

The command

 java HashTesting test2 N

for N an integer, will time the storage and retrieval of N**2 four-
letter words in a hash table. These words all have the form xxyy ,
where the character codes for x and y vary from 1 to N (most of these
"words" won’t be readable). The command

 java HashTesting test3 N

does the same thing, but the "words" have the form xXyY, where
x and y vary as before, and

 Y=2**16-31y-1, X=2**16-31x-1.

Run these two commands with various values of N (start at 20).
Explain in as much detail as you can the reasons for the relative
timing behavior of these tests (that is, why test3 takes longer
than test2), putting your answer in lab9.txt, question #2.

1.3 A faulty class

The class FoldedString is another wrapper class for Strings whose
.equals and .compareTo methods ignore case (e.g., they treat "foo",
"Foo", and "FOO" as equivalent). The command

 java HashTesting test4 the quick brown fox

will treat the trailing command-line arguments ("the", "quick", etc.)
as FoldedStrings, and insert them into a HashSet and (for comparison)
a TreeSet, which uses a balanced binary search tree to store its data.
The program will then check that it can find the all-upper-case
version of each of the words in these sets (since they are supposed to
compare equal).

Try running test4 as shown. HashSet fails to find the
words entered into it, when they are upper-cased, while the TreeSet
seems to work just fine. Explain why in lab9.txt, question #3.

The problem is in the FoldedString class. Change it so that java
HashTesting test4... works. Try to do so in a reasonable way: make
sure that large HashSets full of FoldedStrings will continue to work
well.

2. LinkedLists

The type java.util.LinkedList allows one to create ListIterators on a
list, which provide the .previous() as well the .next() methods. The
provision of .previous() suggests that LinkedList is, in fact, a
doubly linked list (indeed, the documentation says so.) Fill in the
program ListTesting.java to provide a demonstration that LinkedList is
(or is not) indeed doubly linked. That is, your program should
perform some kind of measurement that evidences double linking. You
might find useful bits of code in HashTesting. Explain your
demonstration in lab9.txt.

3. What to turn in

Submit your fixed version of FoldedString.java, your filled-in

code/lab9/activities.txt Mon Nov 05 02:40:48 2012 2

ListTesting.java, and lab9.txt as assignment lab9.

