
CS61B, Fall 2012 HW #7 P. N. Hilfinger

Due: Wed., 24 October 2012

Homework Exercises. You’ll find a skeleton for your answers in the hw7 staff directory.

1. Consider an implementation of binary trees using a BinaryTree class with an inner TreeNode
class, as shown below. The framework is available online in the skeleton file hw7/BinaryTree.java.

Fill in the blanks in the following code (part of BinaryTree to print a tree so as to see its
structure. Empty trees (such as the children of leaf nodes) should print nothing.

/** Dump THIS, with indentation showing structure. */

public void print() {

if (myRoot != null) {

print (myRoot, 0);

}

}

/** Dump ROOT indented by INDENT indentation units. */

void print(TreeNode<?> root, int indent) {

// REPLACE THIS

println(root.myItem, indent);

// REPLACE THIS

}

/** Number of spaces in one indentation unit. */

static int INDENTATION = 4;

/** Print OBJ, indented by INDENT indentation units, followed by a

* newline. */

static private void println(Object obj, int indent) {

for (int k = 0; k < indent * INDENTATION; k += 1)

System.out.print(" ");

System.out.println(obj);

}

1

HW #7 2

The print method should print the tree in such a way that if you turned it 90 degrees clockwise,
you see the tree. Here’s an example:

Tree Printed version

E

C

D

A

B

2. Compilers and interpreters convert string representations of structured data into tree data
structures. For instance, they would contain a method that, given a String representation of an
expression, returns a tree representing that expression:

/** The expression tree corresponding to S. S is a legal, fully

* parenthesized expressions, contains no blanks, and involves

* only the operations + and *, and leaf labels (which can be

* any string of characters other than *, + and parentheses). */

public static BinaryTree<String> exprTree(String s) {

BinaryTree<String> result = new BinaryTree<String>();

result.myRoot = result.exprTreeHelper(s);

return result;

}

See the example on the next page.

HW #7 3

Complete and test the following helper method for exprTree. You will find this in skeleton
file hw7/BinaryTree.java.

private TreeNode<String> exprTreeHelper(String expr) {

if (expr.charAt(0) != ’(’) {

return null; // REPLACE WITH MISSING CODE

} else {

// expr is a parenthesized expression.

// Strip off the beginning and ending parentheses,

// find the main operator (an occurrence of + or * not nested

// in parentheses), and construct the two subtrees.

int nesting = 0;

int opPos = 0;

for (int k=1; k<expr.length()-1; k += 1) {

// REPLACE WITH MISSING CODE

}

String opnd1 = expr.substring(1, opPos);

String opnd2 = expr.substring(opPos+1, expr.length()-1);

String op = expr.substring(opPos, opPos+1);

return null; // REPLACE WITH MISSING CODE.

}

}

Given the expression ((a+(5*(a+b)))+(6*5)), your method should produce a tree that, when
printed using the print method you just designed, would look like

5

*

6

+

b

+

a

*

5

+

a

HW #7 4

3. Given a tree returned by the exprTree method, write and test a method named optimize

that replaces all occurrences of an expression involving only integers with the computed value.
Here’s the header.

public static void optimize(BinaryTree<String> expr)

It will call a helper method as did BinaryTree methods in earlier exercises.
For example, given the tree produced for

((a+(5*(9+1)))+(6*5))

your optimize method should produce the tree corresponding to the expression

((a+50)+30)

Don’t create any new TreeNodes; merely relink those already in the tree.

4. Assume that we have a heap that is stored with the largest element at the root. To print
all elements of this heap that are greater than or equal to some key X, we could perform the
removeFirst operation repeatedly until we get something less than X, but this would presumably
take worst-case time Theta(k lg N), where N is the number of items in the heap and k is the
number of items greater than or equal to X. Furthermore, of course, it changes the heap. Show
how to perform this operation in Θ(k) time without modifying the heap. See the skeleton file
hw7/HeapStuff.java.

