CS61B, Fall 2012 HW #9 P. N. Hilfinger

Due: Wed., 21 November 2012

1. The file TrieSet.java in the hw9 staff code directory contains a skeleton for a set-of-Strings
class For this exercise, we will not worry about compressing the nodes. Fill in the contains
methods in the skeleton to comply with its comment. You will also have to pick a representation
for InnerTrieNode and complete its constructor. Then fill in the insert methods to comply with
their comments.

2. Scheme (like Common Lisp) uses pairs to represent tree and graph structures. The S expres-
sion (S7 . S3) represents a pair whose first (‘car’) element is S7 and whose second (‘cdr’) is Ss.
The shorthand (S; Sg --- Sp,—1 . S,) means

S1 . Sy . G- v (Spor - SR
and (S7 Sy --- S,,) is short for
(S1 . Sy . G- (WS, ON--M

where ‘()” denotes the null (nil) value. Scheme has a notation for denoting general graph structures,
including circular ones. To represent the circular list (1 2 1 2 1 2 ...), for example, where the
tail of the second item is the beginning of the list, one can write

#1=(1 . (2 . #1#)) or #1=(1 2 . #1#)

The #n=S notation (where n is a non-negative integer numeral and S is an S-expression) defines
#n# to be a pointer to an object that the reader returns for S. The notation

(1. (#1=(2) . @#1# . O))) or (1 #1=(2) #1#)

denotes a DAG structure like this (’/’ is null):

A

Fill in the skeleton in hw9/CircPrint. java to print out structures using this notation.



HW #9 2

3. Fill in the riffle method in Shuffle.java to non-destructively riffle-shuffle two lists of
L1 and L2 together, using the Gilbert-Shannon-Reeds model. The Gilbert-Shannon-Reeds model
proceeds as follows (conceptually): at each step, we remove the head of L1 and add it to the result
with probability A/(A 4 B) and the head of L2 to the result with probability B/(A + B), where
A and B are the remaining lengths of L1 and L2, respectively. The actual program you write is
to produce the result without modifying the lists referenced by L1 and L2.

4. [M. Dynin, from a contest in St. Petersburg] Given a rectangle of letters (such as

AB
BC

), a starting position within that rectangle (such as the character in the upper-left corner), and a
string (such as "ABBC"), consider the question of finding paths through the letters that match the
given string, begin at the starting position, and at each step move one square in one of the eight
compass directions (north, south, east, west, northeast, northwest, southeast, southwest). For the
given example, there are two such paths. They are (E-SW-E) and (S-NE-S)—that is, “one step
east, one step southwest, one step east” and “one step south, one step northeast, and one step
south.” For the rectangle

CBB
BBA

and the string "BBCBBA", starting at square in the middle of the top row, there are 12 paths.
Paths are allowed to visit the same position twice.

Using the template in hw9/CountPaths. java, you are to write a program that, given such
a rectangle, string, and starting position, reports the number of distinct paths that match the
string, according to the definitions above. The input (on the standard input, System.in) will
consist of four positive integers (call them M, N, r, and c), a string (S), and M strings consisting
of upper-case letters A-Z, each of which is N characters long. These inputs are all separated from
each other by whitespace. The M strings are the rows of the rectangle, from top to bottom. The
pair (r,c) are the coordinates of the starting position, with 0 <r < M, 0 < ¢ < N. Row 0 is the
top row; column 0 is the left column. The output will be a line reporting the number of paths in
the format shown in the examples.

You may assume that the number of paths is less than 231, M < 80, N < 80. Nevertheless, be
aware that the time limit is about 15 seconds.

Example 1:
Input Output
2200 There are 2 paths.
ABBC AB
BC
Example 2:
Input Output
2 3 0 1 BBCBBA CBB BBA There are 12 paths.




