CS61B, Fall 2012 Project #2: Spatial Database P. N. Hilfinger

Due: 9 November 2012

1 Background

For this second project, we consider the problem of organizing a collection of data about
objects in space. Imagine that you are given a large collection of things—people, say—each
of which has some location at any given time. We might then imagine making queries about
this collection, such as “Where is so-and-so?” or “Who is currently within 100 yards of
location such-and-such?” or “What pairs of people are within 50 yards of each other?”

Any one of the sample queries above could be answered by simply searching all objects
or (in the last case) all pairs of objects. However, if we want to our system to handle large
collections of data, it would be nice to narrow down the set of objects or pairs we must
consider. In the case of geographical data, one way to do this is a data structure known as a
quadtree, described in §6.3 of Data Structures (Into Java) (for three-dimensional data, there
is an analogous structure known as an octtree.) This is a recursive structure that divides the
set of data into four quadrants by position, and then repeatedly subdivides the quadrants as
necessary to get down to subdivisions that contain just one (or at least some small number)
of items. With this, it is relatively easy to answer “who is within distance d of point x.”

In this project, we’ll consider building a library class for just such a structure and using
it in a small application. Your solution will consist not just of a main program that runs
the application, but also of a specific library data structure that can be used by other main
programs. That is, you'll be fulfilling an Application Programming Interface (API). We'll
be testing both your main program and API implementation separately. Therefore, if you
violate the boundary between these two—making your application depend on some detail of
your data structure other than the public interface, or making your data structure assume
certain things about the application that uses it—your program will fail our tests (it might
not even compile).

|
o
| o
| B2 o o
| o o
| B, O —N
| —_—————— ~ g
| s o N
DD 7 \\
— 7
Y=y &-~ . o N
N o s
| N o o \ —
| ~___0_ o o y_yl
o o
| o o
I o [u] o
| : oy
I e o 0 g
I o s
o o
| = ;
| o o

Figure 1: Path of a sample vehicle.

Project #2: Spatial Database 2

The application, called tracker, simulates a vehicle moving through a large field of fixed
observation posts. At intervals, some of the observation posts broadcast a strong radar pulse
that makes the vehicle detectable to posts in the vehicle’s vicinity. These posts record the
position of the vehicle and the time at which they see it. Meanwhile, the vehicle (whose pilot
really doesn’t like being tracked) changes course when it detects one of these signals, turning
45° to the right or left according to a pseudo-random chooser that we provide.

2 Running the program

The main program you will write is called simulate.Track. You invoke it from a command
line like this (things in square braces are optional):

java tracker.Main [--debug=N 1 [INPUTFILE [OUTPUTFILE]]

This runs the program taking input from the file INPUTFILE, or, if this is defaulted, from the
standard input, writing the results to OUTPUTFILE, or if that is defaulted, to the standard
output. The --debug switch, if present, turns on any diagnostic printing you want to do (N
indicates what level of output you want; interpret it as you choose). We will test that your
program does not blow up if we use this option, but will ignore the output and won’t dictate
what N means (except that N < 0 means no output. We suggest that if you want to put
in statements to print things while debugging your program, you arrange for the printing to
happen only when this switch is present. Your program is wrong if it produces extraneous
debugging output with the switch absent.

3 Input

Input files for Track have the following contents, all floating-point numbers:

Tmax S D Yy Uz
1 oy Aty
x2 Y2 Aty

This input is in free format: each input number is delimited by an arbitrary amount of
whitespace (including blanks, tabs, and newlines.) We suggest using the Scanner class to
read it. Although we have shown the input broken into lines at particular points, line breaks
are freely interchangeable with other whitespace, so that each number could appear on a
separate line or all the input could be on a single long line.

The input file may contain comments, which start with a ‘#’ and continue to the end of
their line. Consider the fact that therefore whenever you read a number, you might encounter
a comment instead. First, you'll need to figure out how to get your Scanner to skip these
comments. Second, you will now have a situation in which, if you’re not careful, you’ll have
many repetitions of the code to skip comments sprinkled throughout your program. How
should you deal with this?

The inputs have the following meanings:

9

Project #2: Spatial Database 3

e Tmax is the length of the simulation (which starts at ¢ = 0.)

e S is a seed value that your program is to feed to the supplied random-number generator
in the skeleton.

e D is the maximum distance at which an observation post can detect the vehicle, when
it is illuminated by a radar pulse.

e y is the initial y-position of the vehicle (the initial z is 0.)
e v, > 0 is the initial velocity in the x direction (the initial y velocity is always 0.)
e 1, and y; are the coordinates of the post k.

e Aty > 0 is the interval at which post k& sends out a radar pulse that makes the vehicle
visible to other posts. If Aty = 0, the post never sends out a pulse. Each post sends
out its first signal at time t = Aty.

4 Output

Your program should print out a report containing the simulation parameters (Tmax, S, D, v,
vz); the positions of the vehicle reported by each observation post, and the vehicle’s position
at ¢ = Tmax using the format shown in this example:

Simulation parameters:
Total simulated time: 100.0
Random seed: 42
Maximum detection radius: 5.0
Initial vertical location: 50.0
Initial horizontal velocity of vehicle: 10.0

Reports:

Post #1 at (15.0, 52.0):
(15.0, 50.0)e@1.5
(16.4, 51.4)02.0

Post #17 at (17.0, 53.0):
(16.4, 51.4)02.0

Post #50 at (85.0, 80.0)
(88.0, 79.0)@95.0

Final position: (91.5, 75.5)@100.0

Each observation post reports the positions and times at which it sees the vehicle in order
of increasing time. Include only those posts that have at least one sighting. List the posts
themselves in the order they were input (using “Post #k” for the post at (x, yx).

Project #2: Spatial Database 4

5 The API

The template files for this project include an abstract class util.Set2D, an implementation of
it contained in util.QuadTree, and a utility class, util.Reporter, to help control debugging
output. The only things in the package util that your other files (tracker/Main.java and
any other classes you write) are allowed to use are the public methods and constructors defined
in these classes. You may not expand this set with additional public or protected members
(only private or package private ones). Do not try to circumvent this restriction, since we
will be testing your main program and your util.QuadTree class separately using our own
implementations, and they will fail if you violate the interface in any way. Both util and
tracker also contain testing classes. Be sure mot to make your implementation depend on
these files either. Finally, keep all your .java files in the two packages tracker and util, so
that we can easily test these two independently.

6 Your Task

The directory ~cs61b/code/proj2 contains skeleton files for this project. They are also
available via Subversion (under URL $STAFFREPOS/proj2).

Please read General Guidelines for Programming Projects (see the main lab web page).
To submit your result, use the usual procedures. Before doing so, you can use pretest proj2
on the instructional machines to do a simple sanity check. You will turn in nothing on paper.

Be sure to include tests of your program (yes, that is part of the grade), by extending
the tracker.UnitTest and util.UnitTest methods in the skeleton. Our skeleton directory
contains a couple of trivial tests, but these do not constitute an adequate set of tests! Make
up your tests ahead of time.

The input to your program will come from fallible humans. Therefore, part of the problem
is dealing gracefully with errors. When the user makes a syntax error, your program should
not simply halt and catch fire, but should give some sort of message including the word “error”
(in either case) on its first line and then try to get back to a usable state. However, for this
project, we are not going to be fussy. As long as you detect and report the first error, your
program will be judged to be correct, and any output after the first error message will be
ignored. As for Project 1, your choice of recovery is less important than being sure that your
program does recover gracefully. Your project should exit with status code 1 (which happens
when you call System.exit (1), if the command-line arguments are wrong. Do so also if the
user made any error entering commands to the program, but instead of exiting immediately
on such errors, remember that they happened and generate a status code of 1 when your
program eventually does exit. Error-free execution, on the other hand, should result in a
status code of 0, as is conventional.

Pay attention to style (as will the graders). Comment all new methods you introduce
helpfully, so that the comment alone allows a reader to understand what any given call will
do. Keep the program readable. Avoid masses of redundant code, and take every opportunity
to identify and factor out well-defined methods.

Our testing of your projects (but not our grading!) will be automated. The testing
program will be finicky, so be sure that:

Project #2: Spatial Database 5

e Your main function is in a class called tracker.. Your quadtree implementation is in
class util.QuadTree and implements util.Set2D. The skeleton is already set up this
way.

e Again, don’t modify the API.

e The main procedures in classes tracker.UnitTest and util.UnitTest should run your
tests. We have set up the skeleton file to show you how you test even package-private
methods in your JUnit tests.

e Observe the exit-code conventions.

We will eventually be providing our own version of the main program and our own imple-
mentation of the API. You can use these to test the two parts of your program in isolation.

7 Advice

As before, don’t make the problem any harder than it already is. If you find handling
the command syntax to be difficult, you are probably making life difficult for yourself un-
necessarily: talk to us about it. For writing files, there are java.io.FileWriter and
java.io.PrintWriter.

It’s important to have something working as soon as possible. You’'ll prevent really serious
trouble by doing so. I suggest the following order to getting things working:

1. Write some initial test cases.

2. Handle the mechanics of processing the command-line parameters and getting the input
and output files connected to the standard input and standard output.

3. Get the program to read and properly echo the simulation parameters.

4. Figure out how you are going to represent an observation post (I suggest introducing a
class for this purpose).

5. Write the code to read in all the positions of observation posts and to create whatever
data structures you use to store them.

6. Figure out how you are going to keep track of the next time at which some observation
post sends out a pulse.

7. Implement the vehicle simulation, pretending for the moment that all posts see the
vehicle each time. Get the output format for their reports working.

8. Now restrict the posts that see the vehicle to those that are within range. You’ll be
able to use the staff solution for the util package for this, or just use the supplied
SimpleSet2D class.

9. Now figure out (and document with comments) how you are going to represent a
quadtree, which you will use for finding points.

Project #2: Spatial Database 6

10. Implement the insertion of points into your quadtree.
11. Implement the iterator that lets you sequence through all points in your quadtree.

12. Now implement finding all particles within a given distance of a given point. To find
all particles within a distance d of (z,y), first find all particles whose coordinates are in
the range (x = d,y £ d), which gives you a superset of what you want. Next, check all
of these points to see which fall within distance d.

As you go through this process, keep adding JUnit tests of the features or methods you
add, using them to test your program.

Please don’t move code out of the tracker or util packages in order to avoid dealing
with packages. We will be testing that your tracker package works with our util package.
In order for this to work, you must leave track.java pretty much as it is (basically just a
call to tracker.Main.main).

7.1 Using staff versions

We will maintain two JAR (Java Archive Repository) files containing the staff’s versions of
the packages tracker and util. You can use these to supply one half of the assignment while
you work on the other. We are not supplying source, of course, so when you encounter an
error that occurs in one of the staff’s classes, you will have to step upwards in the call stack
to find where your part most recently called the staff’s. Don’t overuse the staff packages; you
should rely principally on your own unit testing. The staff package, however, can serve as a
”sanity check” that you haven’t seriously misunderstood the assignment.

The staff version of the util package will be in “cs61b/lib/proj2-util.jar and the
tracker will be in “cs61b/lib/proj2-tracker. jar, when they become available. To use
either of these, you must include the appropriate JAR file in your “class path” before the
current directory. If you don’t know how to do this, by all means ask!

	Background
	Running the program
	Input
	Output
	The API
	Your Task
	Advice
	Using staff versions

