
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 61B P. N. Hilfinger

Fall 2014

Using Subversion

1 Introduction

A version-control system (also source-code control system or revision-control system) is a utility for
keeping around multiple versions of files that are undergoing development. Basically, it maintains
copies of as many old and current versions of the files as desired, allowing its users to retrieve old
versions (for example, to “back out” of some change they come to regret), to compare versions of a
file, to merge changes from independently changing versions of a file, to attach additional information
(change logs, for example) to each version, and to define symbolic labels for versions to facilitate later
reference. No serious professional programmer should work without version control of some kind.

Subversion, which we’ll be using this semester, is an open-source version-control system that
enjoys considerable use. The basic idea is simple: Subversion maintains repositories, each of which
is a set of versions (plus a little global data). A version is simply a snapshot of the contents of an
entire directory structure—a hierarchical collection of directories (or “folders” in the Mac and PC
worlds) that contain files and other directories. A repository’s administrator (in this class, that’s the
staff), can control which parts of the repository any given person or group has access to. Subversion

is an example of a client/server system. That is, running it requires two programs, one of which (the
server) accesses the repository and responds to requests from the other program (the client), which
is what you run. The client and server need not run on the same machine, allowing remote access to
the repository. We have one server program, which the staff will look after, and several alternatives
for the client program, depending on how you are working. In this document, we’ll describe the
standard command-line client (called svn), which you run in a shell.

The staff will maintain a Subversion repository containing subdirectories for each of you on the
instructional machines. The Subversion server program manipulates this repository and runs on
one of the instructional machines. You will be able to run the Subversion client program (svn)
either from your class account or remotely from any machine where svn is installed.

At any given time, you may have checked out a copy of all or part of one of the versions of
your repository subdirectory into one of your own directories (known as a working directory). You
can make whatever changes you want (without having any effect on the repository) and then create
(commit or check in) a new version containing modifications, additions, or deletions you’ve made in
your working directory.

If you are working in a team, another member might check out a completely independent copy of
the same version you are working on, make modifications, and commit those. You may both, from
time to time, update your working directory to contain the latest committed files, including changes
from other team members. Should several of you have changed a particular file—you in a committed
revision, let us say, and others in their working copies—then the others can update their working

1

Using Subversion 2

copies with your changes, merging in any of your changes to files you’ve both modified. After these
team members then commit the current state of their working directories, all changes they’ve made
will be available to you on request. If you attempt to commit a file that someone else has modified
and committed, then Subversion will require you to update your file (merging these committed
changes into it) before it will allow you to commit.

In this class, I may give you various code skeletons to be filled in with your solutions. Sometimes,
these skeletons may contain errors I wish to fix, or I might take pity and add a useful method or two
after handing out the assignment. By distributing these skeletons to you in the repository, I make it
possible for you to merge my changes in the skeletons into your own work, without your having to
find our changes and apply them by hand.

Should you mess something up, all the versions you created up to that point still exist unchanged
in the repository. You can simply fall back to a previous version entirely, or replace selected files from
a previous version. Of course, to make use of this facility, you must check your work in frequently.

Even though the abstraction that Subversion presents is that of numbered snapshots of entire
directory trees full of files, its representation is far more efficient. It actually stores differences between
versions, so that storing a new version that is little changed from a previous one adds little data to
the repository. In particular, the representation makes it particularly fast and cheap to create a new
version that contains an additional copy of an entire subdirectory (but in a different place and with a
different name). No matter how big the subdirectory is, the repository contains only the information
of what subdirectory in what version it was copied from. As we’ll see, you can use these cheap copies
to get the effect of branching a project, and of tagging (naming) specific versions. These copies have
other uses as well. In particular, they allow you to import a set of skeleton files for an assignment
without significantly increasing the size of the repository.

What follows is specific to this course. Subversion actually allows much more flexible use than
I illustrate here.

2 Subversion from the command line

2.1 Setting up a working directory

With Subversion, you are almost always working on a copy of something in the repository. Only
when you commit your copy (usually with the command svn commit) does the repository get changed.
It is impossible to emphasize this too much—failing to commit changes (either by not issuing the
command at all or by failing to notice error messages when you do) is the root of most evil that
befalls beginning Subversion users.

In particular, a working directory is a copy of some directory in the repository. I suggest that
you set up such a directory under your account. In what follows, I’ll assume this directory’s name is
work (any name will do) and that it is in your home directory. I’ll also assume that your class login
is cs61b-yu (I need your login because that’s the name of the part of the class repository that you’re
allowed to change). You can create this directory with the following sequence of commands:

% cd # Go to your home directory

% svn checkout svn+ssh://cs61b-ta@torus.cs.berkeley.edu/cs61b-yu/trunk work

Checked out revision 101

The part that begins “svn+ssh:” is the URL (Universal Resource Locator) for a part of the repository.
It identifies the protocol for communicating (svn+ssh), a host machine for those files, the directory
containing the repository (cs61b-yu), and a subdirectory of the repository (trunk). Subversion

will create directory work if needed, and will add to it a hidden directory called work/.svn. Basically,
you’ll never have to worry about these .svn directories; they contain administrative information that

Using Subversion 3

Subversion leaves around for itself for use in later commands, rather like the “cookies” that remote
websites are always storing on your disk so that they remember who you are when next you talk to
them.

You would soon get heartily tired of typing “svn+ssh://cs61b-ta...,” but fortunately, you have
two things working for you:

• Once you have set up a working directory, the hidden .svn contains the information about the
repository’s URL (the svn info command will show it to you. Therefore, you will not have to
use the full URL too often.

• Feeling your pain, we have used the marvelous facilities provided by modern operating system
command processors to define shorthand notation. Specifically, on the instructional machines,
we have defined $MYREPOS to be short for

svn+ssh://cs61b-ta@torus.cs.berkeley.edu/cs61b-yu,

so that the command to create your work directory is simply

svn co $MYREPOS/trunk work

The part of the repository that you own is the subdirectory cs61b-yu. We’ve set this up for you
so that it contains one (initially empty) subdirectory called tags, which is the traditional name for
the directory where you copy specific, named, versions of a project you are developing. In real life,
you might use the tags directories to hold releases of your software. In this class, you’ll use it to put
versions that you hand in. We can read the entire repository (we own it, after all), and so we will see
everything you put in your tags directory and automatically treat it as something you’ve handed in.

The staff keeps a subdirectory of the repository containing its publicly available files (such as
the skeleton we provide for homeworks and projects). For example, the skeleton for lab #2 is
named svn+ssh://cs61b-ta@torus.cs.berkeley.edu/staff/lab2. Again, we have a shorthand:
$STAFFREPOS/lab2.

2.2 Starting a project

Suppose that you’ve just started work on some files for Project #2, and have placed them in the
subdirectory work/proj2 (I’m assuming that you’ve created work as in §2.1. We’ll call the proj2

directory in the repository the trunk version of proj2—the one you do development on. Your sub-
missions will be snapshots of this directory. In other “real-life” uses of Subversion, you’ll see these
trunk directories stored in subdirectories named trunk, but we won’t bother with that here.

At the moment, Subversion knows nothing about these files. You can see this by running the
status subcommand:

% cd ~/work

% ls

proj2

% svn status

? proj2

which means “I see this directory called proj2, but it does not seem to taken from the repository
that this working directory (work) came from.” As soon as possible, you should put all these files
under version control with the add subcommand, which might produce the following output:

Using Subversion 4

% cd ~/work

% svn add proj2

A proj2

A proj2/Main.java

A proj2/Main.java~

A proj2/Main.class

A proj2/doc

A proj2/doc/INTERNALS

The repository has not changed, but now Subversion client knows that you intend for all these files
to eventually be part of the repository, as you’ll see if you check the status:

% svn status

A proj2

A proj2/Main.java

A proj2/doc

A proj2/doc/INTERNALS

Additionally, svn add has modified the working directories proj2 and proj2/doc by adding .svn

directories to them, turning them into official working directories.
If you’d been working on it before this step, your directory might contain files such as Main.java~

(an Emacs back-up file) or Main.class (the result of compilation), which you probably do not need to
archive (they are either useless or reconstructable). On the instructional machines, we’ve configured
your version of the client to ignore these and several other files. For those of you who want to set
up Subversion clients at home, take a look at the contents of the file ~/.subversion/config to
see what we did (look for ‘global-ignores’). If unwanted files such as those do get added for some
reason, you can remove them from version control:

% svn revert proj2/Main.java~ proj2/Main.class

which undoes any changes we’ve made to these files since last creating a version (in this case, it
“unadds” them).

The procedure I’ve outlined so far assumes that you start from scratch with your own files. If we
have provided a skeleton, you can use it by first copying the skeleton into a working directory, like
this:

% cd ~/work

% svn copy $STAFFREPOS/proj2 proj2

A proj2

(As described previously, $STAFFREPOS is a shorthand defined on the instructional machines. The
full command is

% svn copy svn+ssh://cs61b-ta@torus.cs.berkeley.edu/staff/proj2 proj2

which should work for you on systems other than the instructional computers.) You now will have a
directory named ~/work/proj2 with the same files that we ended up with originally.

So far, you’ve worked exclusively with your working files. The repository has not changed at all.
If you were to erase your files at this point, everything you’ve done would be lost permanently. So
now it’s time to record all the changes you’ve made (specifically, these files and directories you’ve
added) in the repository. As I said above, this is called committing the changes:

Using Subversion 5

% cd ~/work/proj2

% svn commit -m ’Start Project 2’

... various messages
Committed revision 1294.

% svn update

At revision 1294.

Each version has a unique revision number. Because of how we’ve arranged the CS61B repository,
the revision number will reflect the total number of versions created by all members of the class, even
though their versions have no impact on yours. In this course, you’ll probably always want to add
that final svn update command, as we did above, so that your working directory and the repository
are completely in sync. Let’s not go into an explanation of why Subversion’s designers made this
step optional just now.

Subversion requires that each version have a log message attached to it, which in this case
you’ve supplied with the -m option. For other changes, your log messages should be rather more
substantial than this. You can also take them from a file:

% svn commit -F my-commit-notes

% svn update

If you don’t supply either, Subversion will try to invoke your favorite editor. If that is Emacs,
which is our default, you’ll find yourself looking at a buffer that contains a list of the files you’ve
added. Add an additional message to the buffer, save it, and exit.

Suppose that at this point, some malicious gremlin executes

% rm -rf ~/work

You can get it all back with

% svn checkout $MYREPOS ~/work

2.3 The typical work cycle

At this point, you enter the usual cycle of adding and editing files, compiling, and debugging. Sub-

version will notice any files you change the next time you commit your changes, without any other
action by you. Each time you introduce a new source file, tell Subversion about it:

% svn add Manager.java

A Manager.java

Occasionally, you’ll need to delete a file that you previously committed:

% svn delete Munger.java

D Munger.java

or rename it:

% svn move Munger.java Mangler.java

A Mangler.java

D Munger.java

In these last two cases, Subversion will remove or move (rename) your working files appropriately
and make a note to itself of these actions for the next commit operation. Neither editing, adding,
removing, nor moving a working file has any effect on the repository, which remains unchanged until
you commit your changes:

Using Subversion 6

% svn commit -m "Add a Manager and mung the Munger"

...

Committed revision 1301.

% svn update

In other words, revision 1301 now contains a snapshot of all the files in the current directory (or its
subdirectories) that have changed since you last committed them, minus those you have removed,
plus those you have added.

Feel free to commit frequently, whenever you think you’ve finished working on a file, or finished a
minor change, or just feel like knocking off or going to lunch. You will not be wasting space because
Subversion stores only changes (or deltas) from one commit operation to the next.

You may find yourself wanting to work both from your home computer and your instructional
account. Subversion will help keep you synchronized. If, for example, you’ve been working from
home, the command

% svn update

...

Updated to revision 1350.

issued from within a working directory, will bring your latest commit into that working directory.
Be careful, though: if you haven’t been careful to commit your changes at home, you won’t get your
most recent work. Likewise, if you did not commit the last changes you made in your instructional
account (so that the working files have changes that are not reflected in the repository), you’ll get
messages about how those changes have been “merged” with the changes you committed from home.
Your working copy will still be out of sync with the repository, and you may want to do a commit
right away.

2.4 Comparing

One of the advantages to keeping around history is that you can see what you’ve done and recover
what you’ve lost. After you’ve done some editing on your files, you can compare them with previous
versions. To see what changes you’ve made to file Main.java since you committed your changes:

svn diff Main.java

You’ll get a listing that looks something like this:

Index: Main.java

===

--- f2 (revision 1350)

+++ f2 (working copy)

@@ -1,3 +1,5 @@

-import java.lang.ArrayList;

+/* Project #2: Main program. */

+

+import java.util.ArrayList;

import java.util.Scanner;

@@ -6,4 +8,5 @@

int N;

String v;

+Scanner inp;

for (String arg : args) {

Using Subversion 7

The ‘+’s indicate lines added in your working copy; the ‘-’s indicate lines removed in your working
copy; and the other lines indicate unchanged lines of context. The remaining lines give the line
numbers of these changes in the two different versions.

To see all changes to all files, just leave off any file names:

% svn diff

Index: Main.java

...

Index: Manager.java

...

You can also compare your working files to previous revisions by number, as in

% svn diff -r 1294

...

or compare two committed revisions of the current directory, as in

% svn diff -r 1294:1300

Of course, revision numbers are not the easiest things to deal with, so there are other options for
specifying differences. To find the differences between the current working copy and what you had
at 1PM, you can write

% svn diff -r {13:00}

or between the current working copy and noon on the 25th of October:

% svn diff -r "{2007-10-25 12:00}" # You need quotes because of the space

or between the last copy you checked in and the previous one (ignoring changes in the working
directory):

% svn diff -r PREV:BASE Main.java

Very often, you’re simply interested in knowing what files you’ve changed in the working directory
and not committed yet. Use the ‘status’ command for this purpose:

% svn status

M Main.java

A Utilities.java

A doc/Manual.txt

D Junk.java

This lists changes with a flag indicating modified files (M), added files (A), and deleted files (D).

2.5 Retrieving previous versions

Suppose you’ve modified Main.java, have not committed it, but have decided that you’ve really
messed it up and should simply roll back to the version you committed. This is particularly easy:

% svn revert Main.java

Reverted ’Main.java’

You can get fancier. Suppose that after committing Main.java, you have second thoughts, and
want to fall back to the previous version of Main.java. Here’s a simple way to do so:

Using Subversion 8

% svn commit

...

Committed revision 1522.

% svn update

At revision 1522.

% svn status

% svn cat -r PREV Main.java > Main.java

% svn status

M Main.java

% svn diff -r PREV Main.java

No output

The cat command, like the similarly named command in Unix, lists file contents from the reposi-
tory. The ”> Main.java” here is Unix notation for “send the standard output of this command to
Main.java.” Thus, the command overwrites Main.java with revision PREV—the version before the
last that was checked in. The repository is not changed yet; the status commands in this example
show that Main.java has been modified from the last committed version. You will have to commit
this change to make it permanent.

The problem with this particular technique (less important in this class, but you might as well get
exposed to real-world considerations) is that it messes up the historical information that Subversion

keeps around. The log command in Subversion lists all the changes that a given file or directory
has undergone. With the short method above, all you’ll be told is that the file committed in 1522 is
somehow different from that in later revisions, rather than being told that the later revision is the
same as that in revision 1521. So I can get a little fancy and recover the previous version in two
steps:

% svn delete Main.java

...

% svn commit -m ’Remove Main.java in order to restore from previous version."

...

% svn copy -r 1521 $MYREPOS/proj2/Main.java .

(don’t forget the dot on the end, meaning “current directory”). Now when you next commit, you’ll
have the version of Main.java as of 1521 and the log will say so.

2.6 URLs and paths

At this point, you’ve seen two different syntaxes for denoting a file or directory. Just plain Unix
paths or Windows file names:

svn delete Main.java

and entire URLs (Universal Resource Locators, just as in your browsers):

svn checkout svn+ssh://cs61b-ta@torus.cs.berkeley.edu/cs61b-yu/trunk/proj2 ~/work/proj2

or
svn checkout $MYREPOS/trunk/proj2 ~/work/proj2

Plain file names generally refer to working files (files in your directories); URLs refer to files in
the repository. As you can see, URLs are rather tedious to write, which is why Subversion uses
those .svn directories to keep track of administrative details, including the original URL, allowing
commands to be much shorter.

Using Subversion 9

Sometimes, however, you really need to reference a file or directory in the repository. The checkout
command and copy commands illustrated previously are two examples. Another very important one
is producing a copy of a directory in the repository itself. Suppose that you’ve completed work on
Project #2 and are ready to submit it. Suppose, in fact, that you’ve just finished committing your
final version, which you keep in working directory ~/work/proj2. In this class, we’ve established the
convention that all submissions go in a subdirectory called tags of your repository. The command
to submit is

% svn copy $MYREPOS/proj2 $MYREPOS/tags/proj2-1 -m "Project 2, first submission"

Committed revision 1600.

This does not change your working directory, but it causes the entire directory tree proj2 in the
repository to get copied as a new subdirectory tags/proj2-1 in the repository. Any future changes
to proj2 either in your working files or in the repository have no effect on this copy. If you have a
reason later to resubmit, just use the same command, but with a slight modification to distinguish
submissions:

% svn copy $MYREPOS/proj2 $MYREPOS/tags/proj2-2 -m "Project 2, second submission"

Committed revision 1701.

This particular application of svn copy is an example of tagging , and you might refer to the copy in
directory tags as a release of your project.

2.7 Merging

By far the most complex part of the version-control process is the process of merging: combining
independent changes to a file. The main problem is that there is no automatic way to do it; at some
point, a human must intervene to resolve conflicting changes. Subversion’s facilities here are rather
primitive as these things go, but for our limited purposes, they will probably suffice. In this course,
the only time the problem is likely to come up is in cases where you have started from some skeleton
files I give you and I later change the skeleton. Assuming you want to take advantage of my changes,
you’ll want to perform some kind of merge.

In general, each time I change files that I expect you to modify, I will tag the resulting directory,
as described above. So, for example, I will keep the current version of the initial files for Project #2
in the repository directory .../staff/proj2, and snapshots of each “released” version of the files
in directories .../staff/proj2-0, .../staff/proj2-1, etc., with the highest-numbered tag being
a copy of .../staff/proj2.

Let’s assume that there are two tags for Project #2, proj2-0 and proj2-1, and that when you
copied the public version, proj2-0 was the version you copied. Now that proj2-1 is out, you want to
incorporate its changes. First, commit your current trunk version (this is a safety measure that gives
you a convenient way to undo the merge if it gets fouled up somehow). Now merge in the changes
between proj2-0 and the current trunk version like this:

% cd ~/work/proj2

% svn merge $STAFFREPOS/proj2-0 $STAFFREPOS/proj2

U Main.java

C Manager.java

The merge operation modifies your working directory only; the repository is not changed. The
message tells you that Main.java has been updated with changes that occurred between proj2-0

and proj2, and that Manager.java has also been updated, but there were some conflicts—changes
between proj2-0 and the trunk that overlap changes you made since proj2-0. These conflicts are
marked in Manager.java like this:

Using Subversion 10

<<<<<<< .working

System.out.println ("Welcome to my project");

initialize ();

=======

initialize (args);

>>>>>>> .merge-right.r1009

The lines between ”<<<<<<< .working and ======= are from your version of the file Manager.java,
and the ones below ======= up to the >>>>>>>... line are from proj2-1. In this case, proj2-0
probably contained initialize (); and you added a println call, while v1 added an argument to
the call to initialize. Subversion decided that was close enough to the new proj2’s change to
suggest an overlap, and so has asked you to fix the problem. Simply edit the file appropriately. In
this case you probably want

System.out.println ("Welcome to my project");

initialize (args);

Now tell Subversion that the problem is solved with the command

% svn resolved Manager.java

Resolved conflicted state of ’Manager.java’

Finally, when all conflicts are resolved, commit your merge just as you would any change to your
files.

2.8 Quick guide

Here are some common version-control tasks and the Subversion commands that perform them. In
all of the following, I’ll assume that

• Your class account is cs61b-yu.

• You having chosen to keep working copies of your directories in directory ~/work.

• You use the naming scheme described above, with one subdirectory per assignment.

We’ll use “change directory” (cd) commands in these examples just to make clear what directory
we’re in. Many of these will be redundant.

Set up your working directory ~/work:

% svn checkout $MYREPOS/trunk ~/work

Create a directory for a new project:

% cd ~/work

% svn mkdir proj2

% svn commit -m "Set up Project 2"

% svn update

You’d put your work in ~/work/proj2.

Create a directory for a new project from our template:

% cd ~/work

% svn copy $STAFFREPOS/proj2 proj2

% svn commit -m "Set up project 2"

% svn update

Using Subversion 11

Tell Subversion about a new file:

% cd ~/work/proj2

create Main.java

% svn add Main.java

This command does not change the repository. You still have to commit the change.

Tell Subversion about a whole new subdirectory:

% cd ~/work/proj2

create directory util and files util/IO.java and util/Manager.java

% svn add util

This command does not change the repository. You still have to commit the change.

Delete a file or directory:

% cd ~/work/proj2

% svn del Main.java

D Main.java

% svn del util

D util/IO.java

D util/Manager.java

D util

These change only your working directory. You must commit in order to change the repository.

Get a brief summary of changes since the last commit:

% cd ~/work/proj2

% svn status

M util/Manager.java

A util/Tools.java

Commit changes:

% cd ~/work/proj2

% svn commit -m "Log message"

various messages

Committed revision 2000.

% svn update

This transmits all additions, deletions, renamings, and changes to version-controlled files in your
working directory to the repository, and creates a new revision that contains them. Leave off the
-m "Log message" to get Subversion to use a text editor to compose the message.

Compare your current working files against the repository: To compare against the most
recently committed version:

% cd ~/work/proj2

% svn diff

Against another version by revision number:

Using Subversion 12

% svn diff -r 1756

Against another version in the repository by time:

% svn diff -r ’{13:00}’

Against another version in the repository by time and date:

% svn diff -r ’{2007-10-17 13:00}’

Compare a particular working file with the repository:

% svn diff Main.java

You can also use ‘-r’ here to look at previous versions of the file in the repository.

Merge corrections in our template into your trunk: First commit the trunk directory. Let’s
assume that you started from the initial release of the skeleton, which will be called proj2-0, and
want to merge in the changes we’ve made to proj2-1.

% cd ~/work/proj2

% svn merge $STAFFREPOS/proj2-0 $STAFFREPOS/proj2

U Main.java

C Manager.java

Edit any files marked C to resolve clashes
% svn resolved Manager.java # Tell svn about resolution

...

% svn commit -m "Merged in skeleton changes between v0 and v1"

Committed revision 2009.

Submit a copy of your trunk: First, make sure your work is committed:

% cd work/proj2

% svn commit -m "Project 2, ready to submit"

Committed revision 2010.

% svn update

and now create a submission copy:

% svn copy $MYREPOS/trunk/proj2 $MYREPOS/tags/proj2-0 -m "Project 2, first submission"

Committed revision 2011.

Follow the same procedure for additional submissions of the same project, changing proj2-0 to
proj2-1, etc.

Find out what you have submitted: To find out what submissions are actually in the repository
(as opposed to merely sitting, uncommitted, in your working directory), use

% svn ls $MYREPOS/tags

A slight variation of this command lists all the files (not just the top-level directories):

% svn ls -R $MYREPOS/tags

although you will probably want to restrict this to a single submission:

% svn ls -R $MYREPOS/tags/proj2-1

Of course, you can see what you actually submitted by just checking it out (I suggest doing so
someplace other than work, to avoid confusion):

svn co $MYREPOS/tags/proj2-1 DIR

	Introduction
	Subversion from the command line
	Setting up a working directory
	Starting a project
	The typical work cycle
	Comparing
	Retrieving previous versions
	URLs and paths
	Merging
	Quick guide

