

1 Graph Representation

Represent the graph with adjacency list and adjacency matrix representation.

^			A	В	C	D	Е	F
A	B, E C D, F B, F F A	Α	F	Т	F	F	Т	F
B C		В	F	F	Т	F	F	F
_		С	F	F	F	Т	F	Т
D E		D	F	Т	F	F	F	Т
F		Е	F	F	F	F	F	Т
Τ.		F	Т	F	F	F	F	F

2 Depth First Search

Run DFS on the same graph, starting from node A. List the order in which each node is traversed. Whenever there is a choice of which node to visit next, visit nodes in alphabetical order. A, B, C, D, F, E

3 Breadth First Search

Run BFS on the same graph this time. A, B, E, C, F, D

4 Dijkstra's Algorithm

Given the following graph, write down the value dist(v) for all vertices V during each iteration of the Dijkstra algorithm, starting at point A.

A	0	0	0	0	0
В	∞	∞	4	4	4
С	∞	∞	∞	6	6
E	∞	2	2	2	2
F	∞	∞	∞	∞	7

5 Topological Sorting

Given the following graph, give a valid topological ordering of the graph. Is it unique?

