CS 61B

MSTs and Dynamic Programming
Fall 2014
1 Minimum Spanning Trees

a) Perform Prim's algorithm to find the minimum spanning tree of the following graph. Pick A as the initial node. Whenever there are more than one node with the same cost, process them in alphabetical order.
b) Use Kruskal's algorithm to find a minimum spanning tree.
c) Bonus! There are quite a few MSTs here. How many can you find?

2 Dynamic Programming: Fibonacci

a) Write a recursive memoized version of the Fibonacci function. As a reminder, fib(n) $=\mathrm{fib}(\mathrm{n}-1)$ $+\operatorname{fib}(\mathrm{n}-2) . \mathrm{fib}(0)=0$ and $\mathrm{fib}(1)=1$. Hint: You may want to define a helper function

```
public static int fib(int n) {
```

\}
b) What is the running time of your method?

3 Dynamic Programming: Maximum Subarray

You are given an array of integers, A. Find the subarray with the maximum sum. Let's suppose we were given an array containing the elements $\{-2,1,-3,4,-1,2,1,-5,4\}$. The maximum subarray is $\{4,-1,2,1\}$ with a sum of 6 . Note that the empty subarray is valid, with a sum of 0 . For example, given $\{-1,-2,-3\}$, you would return 0 for the subarray $\}$
a) Sometimes, we can define a problem in terms of subproblems. What might be an appropriate subproblem for this problem? Hint: If we know the the maximum sum of the array ending at index $i-1$, what do we know about the maximum sum of the array ending at index i ?
b) Write an iterative method to solve the problem.

```
public static int maxSubarraySum(int[] A) {
```

\}

