
CS 61B MSTs and Dynamic Programming
Fall 2014
1 Minimum Spanning Trees

A C E

B D F

1 3

2 2 2 1

1 4

3

a) Perform Prim’s algorithm to find the minimum spanning tree of the following graph. Pick A as
the initial node. Whenever there are more than one node with the same cost, process them in
alphabetical order.

A C E

B D F

1 3

2 1

1

b) Use Kruskal’s algorithm to find a minimum spanning tree.

A C E

B D F

1 3

2 1

1

c) Bonus! There are quite a few MSTs here. How many can you find?

CS 61B, Fall 2014, MSTs and Dynamic Programming 1

2 Dynamic Programming: Fibonacci
a) Write a recursive memoized version of the Fibonacci function. As a reminder, fib(n) = fib(n-1)

+ fib(n-2). fib(0) = 0 and fib(1) = 1. Hint: You may want to define a helper function

public static int fib(int n) {
return fib(n, new HashMap<Integer, Integer>());

}

public static int fib(int n, HashMap<Integer, Integer> memo) {
if (n == 0 || n == 1) {

return n;
}
if (memo.containsKey(n)) {

return memo.get(n);
} else {

memo.put(n, fib(n-1, memo) + fib(n-2, memo));
return memo.get(n);

}
}

b) What is the running time of your method?
Θ(n)

CS 61B, Fall 2014, MSTs and Dynamic Programming 2

3 Dynamic Programming: Maximum Subarray
You are given an array of integers, A. Find the subarray with the maximum sum. Let’s suppose
we were given an array containing the elements {−2,1,−3,4,−1,2,1,−5,4}. The maximum
subarray is {4,−1,2,1} with a sum of 6. Note that the empty subarray is valid, with a sum of 0.
For example, given {−1,−2,−3}, you would return 0 for the subarray {}

a) Sometimes, we can define a problem in terms of subproblems. What might be an appropriate
subproblem for this problem? Hint: If we know the the maximum sum of the array ending
at index i− 1, what do we know about the maximum sum of the array ending at index i?
Comments:
Let S(i) be the maximum sum of the subarray ending at i.

S(i) = max(S(i−1)+A[i],0)

If you have the maximum sum of the prefix of the array A ending at i−1, then to calculate the
maximum sum of the prefix of the array ending at i we consider two possibilities. If the sum of
the subarray ending at index i−1 plus A[i] is positive, then that must be the maximum subarray
sum ending at i including A[i]. In other words, given the maximum subarray ending at i−1, we
check to see if tacking on item A[i] gives us a positive sum. Otherwise, if the maximum sum is
negative when we include A[i], then we’re better off just choosing the empty subarray.

b) Write an iterative method to solve the problem.

public static int maxSubarraySum(int[] A) {
int maxSoFar = 0;
int[] memo = new int[A.length];
memo[0] = Math.max(A[0], 0);
for (int i = 1; i < A.length; i++) {

memo[i] = Math.max(0, A[i] + memo[i-1]);
maxSoFar = Math.max(memo[i], maxSoFar);

}
return maxSoFar;

}

Comments:
You can actually optimize this solution further. As an exercise, try solving this problem without
creating an array.

CS 61B, Fall 2014, MSTs and Dynamic Programming 3

