
CS 61B Discussion 1 Fall 2014
1 Adder
Leo, a diligent CS61B student, was trying to submit HW1 when his computer crashed. Upon re-
booting, he discovered that some portions of his code had disappeared! Help Leo fix his homework
so that he can turn it in on time.
public class Adder {

/** Adds the range of numbers from 1 to N recursively.

* @param N range of numbers being added

* @return sum of numbers in range

*/
public static int addRange(int n) {

/* Base case */
if (n == 1) {

return 1;
}

/* Recurse! */
return n + addRange(n - 1);

}
}

Let’s first look at public static int addRange(int n). This is called the method
header.

• The int in the method header refers to the return type of this function. This lets the compiler
as well as other developers know that the addRange function returns an integer.

• The (int n) after the method name refers to the parameters that the method accepts. The
addRange method takes in one integer n.

• You will learn what public and static mean later in this course.

The method signature is addRange(int n). No two methods in the same class can have the
same method signature.

The solution to this problem relies on recursion. Recall from CS 61A that a function is called
recursive if the body of that function calls itself, either directly or indirectly.
In this case, we decrement the argument to each recursive call to addRange each time till we
reach the base case of n == 1.

CS 61B, Fall 2014, Discussion 1 1

2 Fibonacci Numbers
The next problem took Leo several days, but he only has an hour until his homework is due. Help
him out!
/** The Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, ... */
public class Fibonacci {

/** fib1(N) is the Nth Fibonacci number, for N ≥ 0. fib1(N)

* is tree recursive. */
public static int fib1(int n) {

if (n <= 1) {
return n;

}
return fib(n - 1) + fib(n - 2);

}

This method is tree recursive because it calls itself more than once within its body. This solution
turns out to be quite inefficient because its branching factor leads to exponential growth.

For example, fib(n-1)will call fib(n-2) and fib(n-3). Thus, we will be calling fib(n-2)
twice, and fib(n-3) three times, and so on. How many times is fib(n-4) called? Hint, it’s
not four.

/** fib2(N, K, F0, F1) is the Nth Fibonacci number, assuming

* that F0 and F1 are the K −1th and Kth Fibonacci numbers,

* 1 ≤ K ≤ N. Thus, fib2(N, 1, 0, 1) is simply the Nth

* Fibonacci number. */
public static int fib2(int n, int k, int f0, int f1) {

if (k == n) {
return f1;

} else {
return fib2(n, k + 1, f1, f1 + f0);

}
}

As opposed to fib1, fib2 is tail-recursive. This means that we don’t have to recompute already
known values.

CS 61B, Fall 2014, Discussion 1 2

/** fib3(N) is the Nth Fibonacci number, for N ≥ 0. fib3(N)

* is iterative. */
public static int fib3(int n) {

if (n == 0) {
return 0;

}
int prev = 0;
int curr = 1;
for (int i = 1; i < n; i += 1) {

int tmp = curr;
curr = prev + curr;
prev = tmp;

}
return curr;

}

Nothing special here. This is just an iterative version of fib.
}

CS 61B, Fall 2014, Discussion 1 3

