CS 61B

Regex, Bits \& Algorithmic Analysis
Fall 2014
1 Bit Manipulation

1. Write 22 in binary.

10110
2. Assuming $x_{1}, x_{2}, \ldots, x_{n}$ are integers. What is $\left(x_{1} \wedge x_{2} \wedge \ldots \wedge x_{n}\right)^{\wedge}\left(x_{1} \wedge x_{2}{ }^{\wedge} \ldots \wedge x_{n}\right)$? 0
3. Write an expression to check whether a 32-bit integer is less than 0 using only $==$ and the bit operators.

```
(x >>> 31) == 1
```

4. What does the following code do?
```
public static int mysteryBit(int n) {
    return n & (n - 1);
}
```

Return n with the rightmost 1 bit set to 0 .
5. Write a program to count the number of 1 bits in an integer. You can use the function in part 5 as a hint.

```
public static int countBits(int n) {
    int count = 0;
    while (n != 0) {
        n &= (n - 1);
        count += 1;
    }
    return count;
}
```


2 Algorithmic Analysis

1. For each of the following function, find the Big-Theta expression for:
a) The number of $i+=1$ or i $*=2$ operations
b) The number of $j+=1$ operations
c) The number of print operations
d) The runtime of the function
```
public static void printIndices(int n) {
    for (int i = 0; i < n; i += 1) {
        for (int j = 0; j < i; j += 1) {
                System.out.println(i + j);
        }
    }
}
public static void printIndices2(int n) {
    for (int i = 1; i < n; i *= 2) {
        for (int j = 0; j < i; j += 1) {
                System.out.println(j);
        }
    }
}
```

a) $\Theta(n)$ for printIndices and $\Theta(\log (n))$ for printIndices 2
b) $\Theta\left(n^{2}\right)$ for printIndices and $\Theta(n)$ for printIndices 2
c) Same as b)
d) Same as b)
2. What is the big-Theta running time of the following functions?

```
public int weirdFib(int n) {
    if (n <= 1) {
        return n;
    }
    return weirdFib(n - 1) + weirdFib(n - 1);
}
public static void mystery(int n) {
    if (n == 1) {
        return;
    }
    for (int i = 0; i < n; i += 1) {
        mystery(n-1);
    }
}
\Theta ( 2 ^ { n } ) \text { for fib and } \Theta ( n ! ) \text { for mystery}
```


3 Regex

Write a Java regular expression to match each of the following sets of binary strings. You may only use the following characters: () | 01 *

1) All binary strings
2) Binary strings that begins and ends with 1
3) Binary strings that contains at least three 1 s
4) Binary string that contains at least three consecutive 1 s
5) Binary string that doesn't contain the substring 110.
6) $(0 \mid 1) *$
7) $1(0 \mid 1) * 1 \mid 1$
8) $0 * 10 * 10 * 1(0 \mid 1) *$
9) $(0 \mid 1) * 111(0 \mid 1) *$
10) $(0 \mid 10) * 1 *$
