
CS 61B Sorting and Hashing Fall 2014
1 Sorting I
Show the steps taken by each sort on the following unordered list:

106, 351, 214, 873, 615, 172, 333, 564

(a) Quicksort (assume the pivot is always the first item in the sublist being sorted and the array
is sorted in place). At every step circle everything that will be a pivot on the next step and
box all previous pivots.�� ��106 351 214 873 615 172 333 564

106
�� ��351 214 873 615 172 333 564

106
�� ��214 172 333 351

�� ��873 615 564

106 172 214 333 351
�� ��615 564 873

106 172 214 333 351 564 615 873

(b) Merge sort. Show how the list is broken up at every step.
106 351 214 873 615 172 333 564

106 351 214 873 172 615 333 564

106 214 351 873 172 333 564 615
106 172 214 333 351 564 615 873

(c) LSD radix sort.
106 351 214 873 615 172 333 564

351 172 873 333 214 564 615 106

106 214 615 333 351 564 172 873

106 172 214 333 351 564 615 873

(d) Give an example of a situation where using insertion sort is more efficient than using merge
sort.
Insertion sort performs better than merge sort for lists that are already almost in sorted order
(i.e. if the list has only a few elements out of place or if all elements are within k positions
of their proper place and k < logN).

2 Sorting II
Match the sorting algorithms to the sequences, each of which represents several intermediate steps
in the sorting of an array of integers.
Algorithms: Quicksort, merge sort, heap sort, MSD radix sort, insertion sort.

CS 61B, Fall 2014, Sorting and Hashing 1



(a) 12, 7, 8, 4, 10, 2, 5, 34, 14
7, 8, 4, 10, 2, 5, 12, 34, 14
4, 2, 5, 7, 8, 10, 12, 14, 34
Quicksort

(b) 23, 45, 12, 4, 65, 34, 20, 43
12, 23, 45, 4, 65, 34, 20, 43
Insertion sort

(c) 12, 32, 14, 11, 17, 38, 23, 34
12, 14, 11, 17, 23, 32, 38, 34
MSD radix sort

(d) 45, 23, 5, 65, 34, 3, 76, 25
23, 45, 5, 65, 3, 34, 25, 76
5, 23, 45, 65, 3, 25, 34, 76
Merge sort

(e) 23, 44, 12, 11, 54, 33, 1, 41
54, 44, 33, 41, 23, 12, 1, 11
44, 41, 33, 11, 23, 12, 1, 54
Heap sort

3 Hash Codes
(a) Suppose that we represent Tic-Tac-Toe boards as 3 by 3 arrays of integers (each of which is in

the range 0 to 2). Describe a good hash function for Tic-Tac-Toe boards that are represented
in this manner. Try to come up with one such that boards that are not equal will never have
the same hash code.
We can interpret the Tic-Tac-Toe board as a nine digit base 3 number, and use this as the
hash code. More concretely, if the array used to store the Tic-Tac-Toe board was called
board, then we could compute the hash code as follows:

board[0][0]+3 ·board[0][1]+32 ·board[0][2]+33 ·board[1][0]+ . . .+38 ·board[2][2]

This hash code actually guarantees that any two distinct Tic-Tac-Toe boards will always have
distinct hash codes (in most situations this property is not feasible). Another thing to note
is that if we used this same idea on boards of size N ×N then it would take Θ(N2) time to
compute.

(b) Is it possible to add arbitrarily many Strings to a Java HashSet with no collisions? If not,
what is the minimum number of distinct Strings you need to add to a HashSet to guarantee a
collision?
No, it is not possible. Ideally, we should be able to make arbitrarily large hash codes and
keep resizing the HashSet’s underlying array as many times as necessary (which would mean
we could add arbitrarily many Strings to a HashSet without collisions). However, in Java this
is not possible. There are several reasons for this:

CS 61B, Fall 2014, Sorting and Hashing 2



1) In Java, the hashCode method must return an int, which must have a value between −231

and 231 − 1. This means that there are only 232 possible distinct hashCodes, so if we add
232+1 distinct Strings then we are guaranteed that two of them will have the same hashCode.

2) In Java, arrays have a maximum size of 331 − 1. So we cannot resize the HashSet’s
underlying array past this point. So if we add 231 Strings then we are guaranteed that two of
them will be put in the same bucket (though they might not have the same hashCode).

3) In Java’s implementation of HashSet, the size of the underlying array is always a power
of two. Thus the maximum size of the underlying array is 230, so if we add 230 +1 Strings
then we are guaranteed that two of them will be put in the same bucket.

So the final answer is that 230 +1 is the minimum number of Strings required to guarantee a
collision. You aren’t expected to be able to come up with this exact number yourself, since it
depends on the specific implementation details of Java’s HashSet. Understanding the basic
reasoning is enough (for instance, (1) is a good answer, though not technically correct).

4 Bonus Question
Describe a way to implement a linked list of Strings so that removing a String from the list takes
constant time. You may assume that the list will never contain duplicates.
Use a doubly linked list and a HashMap whose keys are the Strings in the list and whose values are
pointers to the nodes of the list. Then when removing a String, look up the corresponding node in
the HashMap and delink that node from the list.

CS 61B, Fall 2014, Sorting and Hashing 3


