
Recreation

adds a JUnit test:

void mogrifyTest() {
assertEquals("mogrify fails", new int[] { 2, 4, 8, 12

MyClass.mogrify(new int[] { 1, 2, 4, 6 }));

always seems to fail, no matter what mogrify does. Why?

sees this in an autograder log:

proj0/game2048 directory.

likely to be the problem?

does not see his proj0 submission under the Scores tab.
be the problem?

01:47:49 2017 CS61B: Lecture #12 1

CS61B Lecture #12: Exceptions

01:47:49 2017 CS61B: Lecture #12 2

What to do About Errors?

amount of any production program devoted to detecting and
to errors.

errors are external (bad input, network failures); others are
errors in programs.

method has stated precondition, it’s the client’s job to comply.

nice to detect and report client’s errors.

we throw exception objects, typically:

new SomeException (optional description);

are objects. By convention, they are given two construc-
with no arguments, and one with a descriptive string argu-

(which the exception stores).

system throws some exceptions implicitly, as when you deref-
null pointer, or exceed an array bound.

01:47:49 2017 CS61B: Lecture #12 3

Catching Exceptions

causes each active method call to terminate abruptly, until
unless) we come to a try block.

exceptions and do something corrective with try:

Stuff that might throw exception;
(SomeException e) {

something reasonable;
(SomeOtherException e) {

something else reasonable;

with life;

SomeException exception occurs in “Stuff. . . ,” we immedi-
something reasonable” and then “go on with life.”

Descriptive string (if any) available as e.getMessage() for error
and the like.

01:47:49 2017 CS61B: Lecture #12 4

Exceptions: Checked vs. Unchecked

thrown by throw command must be a subtype of Throwable
java.lang).

pre-declares several such subtypes, among them

used for serious, unrecoverable errors;

Exception, intended for all other exceptions;

RuntimeException, a subtype of Exception intended mostly for
programming errors too common to be worth declaring.

Pre-declared exceptions are all subtypes of one of these.

subtype of Error or RuntimeException is said to be unchecked.

exception types are checked.

01:47:49 2017 CS61B: Lecture #12 5

Unchecked Exceptions

for

Programmer errors: many library functions throw
IllegalArgumentException when one fails to meet a precondi-

detected by the basic Java system: e.g.,

Executing x.y when x is null,

Executing A[i] when i is out of bounds,

Executing (String) x when x turns out not to point to a String.

catastrophic failures, such as running out of memory.

thrown anywhere at any time with no special preparation.

01:47:49 2017 CS61B: Lecture #12 6



Checked Exceptions

to indicate exceptional circumstances that are not neces-
programmer errors. Examples:

Attempting to open a file that does not exist.

or output errors on a file.

Receiving an interrupt.

checked exception that can occur inside a method must ei-
handled by a try statement, or reported in the method’s

declaration.

example,

myRead() throws IOException, InterruptedException { ... }

that myRead (or something it calls) might throw IOException

InterruptedException.

Design: Why did Java make the following illegal?

Parent { class Child extends Parent {

() { ... } void f () throws IOException { ... }

}

01:47:49 2017 CS61B: Lecture #12 7

Good Practice

exceptions rather than using print statements and System.exit
everywhere,

response to a problem may depend on the caller, not just
where problem arises.

throw an exception when programmer violates preconditions.

Particularly good idea to throw an exception rather than let bad
corrupt a data structure.

to document when methods throw exceptions.

information about the cause of exceptional condition, put
exception rather than into some global variable:

MyBad extends Exception { try {...

IntList errs; } catch (MyBad e) {

IntList nums) { errs=nums; } ... e.errs ...

}

01:47:49 2017 CS61B: Lecture #12 8


	Recreation
	CS61B Lecture #12: Exceptions
	What to do About Errors?
	Catching Exceptions
	Exceptions: Checked vs. Unchecked
	Unchecked Exceptions
	Checked Exceptions
	Good Practice

