Package Mechanics

espond to things being modeled (represented) in one's

collections of “related” classes and other packages.
aindard libraries and packages in package java and javax.
class resides in the anonymous package.

ewhere, use a package declaration at start of file, as in
atabase; or package ucb.util;

uses convention that class C in package P1.P2 goes in
P1/P2 of any other directory in the class path.

B

junit.textui.TestRunner MyTests

r TestRunner.class in./junit/textui, ~/ java-utils/junit/textui
oks for junit/textui/TestRunner.class in the junit.jar

a single file that is a special compressed archive of an

ory of files).

4:42 2017 CS61B: Lecture #12 2

t CLASSPATH=.:$HOME/java-utils:$MASTERDIR/1lib/classes/junit.jar

The Access Rules

have two packages (not necessarily distinct) and two
ses:

package P2;

c1 ... { class C2 extends C3 {

named M, void £(P1.C1 x) {... x.M ...} // OK?
| // C4 a subtype of C2 (possibly C2 itself)
) void g(C4 y) {... y.M ... } // OK?

S VA
©.Mis
. is public;

.is protected and P1 is P2;
.is package private (default—no keyword) and P1 is P2;
A is private.

., if C3is C1, then y.Mis also legal under the conditions
A is protected (i.e., even if P1 is not the same as P2).

)4:42 2017 CS61B: Lecture #12 4

Intentions of this Design

rations represent specifications—what clients of a pack-
osed to rely on.

vate declarations are part of the implementation of a
ust be known to other classes that assist in the imple-

leclarations are part of the implementation that sub-
sed, but that clients of the subtypes generally won't.

larations are part of the implementation of a class that
ss needs.

)4:42 2017 CS61B: Lecture #12 6

Lecture #13: Packages, Access, Etc.
on facilities in Java.
es.

dden method.

ructors.

4:42 2017 CS61B: Lecture #12 1

Access Modifiers

fiers (private, public, protected) do not add anything
' of Java.

W a programmer to declare what classes are supposed
zcess (“know about") what declarations.

also part of security—prevent programmers from ac-
js that would "break” the runtime system.

' always determined by static types.

nine correctness of writing x.£ (), look at the definition
2 static type of x.

:cause the rules are supposed to be enforced by the
which only knows static types of things (static types
:nd on what happens at execution time).

)4:42 2017 CS61B: Lecture #12 3

What May be Controlled

nterfaces that are not nested may be public or package
aven't talked explicitly about nested types yet).

ields, methods, constructors, and (later) nested types—
¢ of the four access levels.

2 a method only with one that has at least as permissive
rel. Reason: avoid inconsistency:

4 package P2;
ss C1 { class C3 {
it £O { ...} void g(C2 y2) {
Cl yl =y2
y2.£0; // Bad?77?
5s C2 extends C1 { y1.£0; // OK?7!17
11y a compiler error; pretend }
not and see what happens }
...}

*e's no point in restricting C2.f, because access control
itatic types, and C1.f is public.

)4:42 2017 CS61B: Lecture #12 5

Quick Quiz

// Anonymous package

class A2 {
void g(SomePack.Al x) {
0K x.f10; // 0K?
x.yl = 3; // 0K?
1; }
: }

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.£10; // O0K?
x.yl = 3; // OK?
£10; // OK?
yl =3; // OK?
x1 =3; // OK?
}
1

hree lines of h have implicit this.’s in front. Static type

4:42 2017 CS61B: Lecture #12 8

Quick Quiz

b // Anonymous package

{
class A2 {
void g(SomePack.Al x) {
0K x.£10); // ERROR
x.yl = 3; // ERROR
yi; }
; }

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.£10; // 0K?
x.yl = 3; // OK?
£10; // OK?
yl =3; // OK?
x1 =3; // OK?
}
1

hree lines of h have implicit this.'s in front. Static type

)4:42 2017 CS61B: Lecture #1210

Quick Quiz

b // Anonymous package

{
class A2 {
void g(SomePack.Al x) {
0K x.£10); // ERROR
x.yl = 3; // ERROR
yi; }
; }

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.£10; // ERROR
x.yl = 3; // OK?
£10; // ERROR
yl =3; // OK?
x1 =3; // OK?
}
1

hree lines of h have implicit this.'s in front. Static type

)4:42 2017 CS61B: Lecture #1212

Quick Quiz

// Anonymous package

class A2 {
void g(SomePack.Al x) {
0K? x.£10; // 0K?
x.yl = 3; // OK?
1; }
: }

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.£10; // OK?
x.yl = 3; // OK?
£10; // OK?
yi=3; // 0k?
x1 = 3; // OK?
}
}

hree lines of h have implicit this.'s in front. Static type

4:42 2017 CS61B: Lecture #12 7

Quick Quiz

5 // Anonymous package

{
class A2 {
void g(SomePack.Al x) {
0K x.f1(); // ERROR
x.yl = 3; // OK?
y1; }
; }

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.£10; // OK?
x.yl = 3; // OK?
£10; // OK?
yi=3; // 0k?
x1 = 3; // OK?
}
}

hree lines of h have implicit this.'s in front. Static type

)4:42 2017 CS61B: Lecture #12 9

Quick Quiz

5 // Anonymous package

{
class A2 {
void g(SomePack.Al x) {
0K x.£1(); // ERROR
x.yl = 3; // ERROR
yi; }

; }

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.£10); // ERROR
x.yl = 3; // OK?
£10; // OK?
yi=3; // 0k?
x1 = 3; // OK?
}
}

hree lines of h have implicit this.'s in front. Static type

)4:42 2017 CS61B: Lecture #1211

Quick Quiz

b // Anonymous package

class A2 {
void g(SomePack.Al x) {
0K x.f10; // ERROR
x.yl = 3; // ERROR
1; }
: }

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.£10; // ERROR
x.yl = 3; // OK?
£10; // ERROR
yi = 3; // OK
x1 = 3; // ERROR
}
1

hree lines of h have implicit this.’s in front. Static type

4:42 2017 CS61B: Lecture #1214

Access Control Static Only

'vate” don't apply to dynamic types; it is possible to call
icts of types you can't name:
package mystuff;

|
things. */ |
ice Collector { | class User {
ject x); | utils.Collector ¢ =
| utils.Utils.concat();
_______________ |
| c.add("foo"); // OK
Jtils { | . c.value(); // ERROR
lc Collector concat() { | ((utils.Concatenator) c).value()
7 Concatenator(); | // ERROR
|
} class that collects strings. */
jater implements Collector {
stuff = new StringBuffer();
add(Object x) { stuff.append(x); n += 1; }
it value() { return stuff.toString(); }
)4:42 2017 CS61B: Lecture #1216

Loose End #2: Static importing

ily get tired of writing System.out and Math.sqrt. Do
zed to be reminded with each use that out is in the
iystem package and that sqrt is in the Math package

es are of static members. New feature of Java allows
viate such references:

tatic java.lang.System.out; means “within this file,
je out as an abbreviation for System. out.

tatic java.lang.System.*; means "within this file, you
ly static member hame in System without mentioning the

s only an abbreviation. No special access.

I't do this for classes in the anonymous package.

)4:42 2017 CS61B: Lecture #1218

Quick Quiz

// Anonymous package

class A2 {
void g(SomePack.Al x) {
0K x.£1(); // ERROR
x.yl = 3; // ERROR
1; }
: }

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.£10; // ERROR
x.yl = 3; // OK?
£10); // ERROR
yi=3; // 0K
x1 = 3; // OK?
}
}

hree lines of h have implicit this.'s in front. Static type

4:42 2017 CS61B: Lecture #1213

Quick Quiz

; // Anonymous package

{
class A2 {
void g(SomePack.Al x) {
0K x.f1(); // ERROR
x.yl = 3; // ERROR
y1; }
; }

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.£10; // ERROR
x.yl = 3; // ERROR
£10; // ERROR
yi=3; // 0K
x1 = 3; // ERROR
}
}

hree lines of h have implicit this.'s in front. Static type

)4:42 2017 CS61B: Lecture #1215

Loose End #1: Importing

1.util.List every fime you mean List or
‘egex.Pattern every time you mean Pattern is annoying.

of the import clause at the beginning of a source file is
oreviations:

ava.util.List; means “within this file, you canuse List
~eviation for java.util.List.

ava.util.*; means “within this file, you can use any
2 in the package java.util without mentioning the pack-

yes not grant any special access; it only allows abbrevi-

ur program always contains import java.lang.*;

)4:42 2017 CS61B: Lecture #1217

End #4: Using an Overridden Method

F you wish to add to the action defined by a superclass's
er than to completely override it.

ng method can refer to overridden methods by using
refix super.

, you have a class with expensive functions, and you'd
zing version of the class.

pteHard {
tate(String x, int y) { ... }

hteLazily extends ComputeHard {
tate(String x, int y) {
n't already have answer for this x and y) {

noize (save) result;
hrn result;

memoized result;

4:42 2017 CS61B: Lecture #1220

result = super.cogitate(x, y); // <<< Calls overridden function

Inner Classes

lowed a static nested class. Static nested classes are
other, except that they can be private or protected,
see private variables of the enclosing class.

ested classes are called inner classes.

ire (and syntax is odd); used when each instance of the
is created by and naturally associated with an instance
ining class, like Banks and Accounts:

unt account

unt account

| Bank e = new Bank(...);
d connectTo(...) {...} | Bank.Account p0 =
s Account { | e.new Account(...);
id call(int number) {
his.connectTo(...); ...

| Bank.Account pl =

I
.this means "the bank that |

|

|

e.new Account(...);

ted me"

)4:42 2017 CS61B: Lecture #1222

Loose End #6: instanceof

2 to ask about the dynamic type of something:

ker (Reader r) {
nceof TrReader)
t.print ("Translated characters: ");

t.print ("Characters: ");

's is seldom what you want to do. Why do this:

eof StringReader)
|StringReader) x;
stanceof FileReader)
[FileReader) x;

1 just call x.read () ?!

se instance methods rather than instanceof.

)4:42 2017 CS61B: Lecture #1224

ose End #3: Parent constructors

tes #5, talked about how Java allows implementer of a
rol all manipulation of objects of that class.

, this means that Java gives the constructor of a class
t at each new object.

nss extends another, there are two constructors—one
nt type and one for the new (child) type.

Java guarantees that one of the parent’s constructors
t. In effect, there is a call to a parent constructor at
g of every one of the child's constructors.

he parent's constructor yourself. By default, Java calls
' (parameterless) constructor.

re { class Rectangle extends Figure {
Lgure(int sides) { public Rectangle() {
super(4);
}oo.
4:42 2017 CS618: Lecture #1219

Loose End #5: Nesting Classes

it makes sense to nest one class in another. The nested

nly in the implementation of the other, or
tually “subservient” to the other

| classes can help avoid name clashes or "pollution of the
with names that will never be used anywhere else.

lynomials can be thought of as sequences of terms.
" meaningful outside of Polynomials, so you might define
present a term inside the Polynomial class:

nomial {
on polynomials

Term[] terms;
static class Term {

)4:42 2017 CS61B: Lecture #1221

Trick: Delegation and Wrappers

ppropriate to use inheritance to extend something.

ives example of a TrReader, which contains another
vhich it delegates the task of actually going out and
acters.

mple: a class that instruments objects:

s { class Monitor implements Storage {
L x); int gets, puts;
private Storage store;
Monitor(Storage x) { store = x; gets = puts = 0; }

public void put(Object x) { puts += 1; store.put(x); }
public Object get() { gets += 1; return store.get(); }

// INSTRUMENTED

ithing; Monitor S = new Monitor(something):
£(8);
System.out.println(S.gets + " gets");

led a wrapper class.

)4:42 2017 CS61B: Lecture #12 23

	CS61B Lecture #13: Packages, Access, Etc.
	Package Mechanics
	Access Modifiers
	The Access Rules
	What May be Controlled
	Intentions of this Design
	Quick Quiz
	Access Control Static Only
	Loose End #1: Importing
	Loose End #2: Static importing
	Loose End #3: Parent constructors
	Loose End #4: Using an Overridden Method
	Loose End #5: Nesting Classes
	Inner Classes
	Trick: Delegation and Wrappers
	Loose End #6: instanceof

