Integer Types and Literals

Signed?	Literals
Yes	Cast from int: (byte) 3
Yes	None. Cast from int: (short) 4096
	'a' // (char) 97 '\n' // newline ((char) 10)
No	'\t' // tab ((char) 8)
	'\\' // backslash 'A', '\101', '\u0041' // == (char) 65
	123
Yes	0100 // Octal for 64
	0x3f, 0xffffffff // Hexadecimal 63, -1 (!)
Yes	123L, 01000L, 0x3fL
165	1234567891011L

herals are just negated (positive) literals.

ns that there are 2^N integers in the domain of the type: range of values is $-2^{N-1} \dots 2^{N-1} - 1$. Ed, only non-negative numbers, and range is $0...2^N - 1$.

5:44:05 2017 CS61B: Lecture #14 2

CS61B: Lecture #14 1

CS61B Lecture #14: Integers

:44:05 2017

Modular Arithmetic: Examples

- 8) yields 0, since $512 0 = 2 \times 2^8$.
- 2) and (byte) (127+1) yield -128, since 128 (-128) =
- *99) yields 15, since $9999 15 = 39 \times .2^8$.
- *13) yields 122, since $-390 122 = -2 \times 2^8$.
- yields $2^{16} 1$, since $-1 (2^{16} 1) = -1 \times 2^{16}$.

Modular Arithmetic

w do we handle overflow, such as occurs in 10000*10000*10000? ges throw an exception (Ada), some give undefined re-

the result of any arithmetic operation or conversion pes to "wrap around"—modular arithmetic.

"next number" after the largest in an integer type is (like "clock arithmetic").

sult of some arithmetic subexpression is supposed to T, an n-bit integer type,

ompute the real (mathematical) value, x,

a number, x', that is in the range of T, and that is to x modulo 2^n .

ins that x - x' is a multiple of 2^n .)

5:44:05 2017 CS61B: Lecture #14 3

Negative numbers

resentation for -1?

$$\begin{array}{c|cccc}
 & 1 & 00000001_2 \\
+ & -1 & 11111111_2 \\
= & 0 & 1 & | 000000000_2
\end{array}$$

h a byte, so bit 8 falls off, leaving 0.

ed bit is in the 2^8 place, so throwing it away gives an r modulo 2^8 . All bits to the left of it are also divisible

types (char), arithmetic is the same, but we choose to ly non-negative numbers modulo $2^{16}\colon$

L 5:44:05 2017 CS61B: Lecture #14 6

Modular Arithmetic and Bits

ound?

tion is the natural one for a machine that uses binary

consider bytes (8 bits):

Decimal	Binary
101	1100101
×99	1100011
9999	100111 00001111
- 9984	100111 00000000
15	00001111

it n, counting from 0 at the right, corresponds to 2^n .

he left of the vertical bars therefore represent multi-

them away is the same as arithmetic modulo 256.

5:44:05 2017 CS61B: Lecture #14 5

Promotion

```
perations (+, *, ...) promote operands as needed.
just implicit conversion.
perations,
rand is long, promote both to long.
promote both to int.
 == (int) aByte + 3 // Type int
 == aLong + (long) 3 // Type long
= (int) 'A' + 2
                       // Type int
Byte + 1
                        // ILLEGAL (why?)
ely,
1;
         // Defined as aByte = (byte) (aByte+1)
mple:
 aChar is an upper-case letter
rCaseChar = (char) ('a' + aChar - 'A'); // why cast?
:44:05 2017
                                       CS61B: Lecture #14 8
```

Conversion

ava will silently convert from one type to another if this and no information is lost from value.

```
ast explicitly, as in (byte) x.
```

```
aByte; anInt = aByte; anInt = aShort;
Char; aLong = anInt;
, might lose information:
Long; aByte = anInt; aChar = anInt; aShort = anInt;
aChar; aChar = aShort; aChar = aByte;
special dispensation:
3; // 13 is compile-time constant
2+100 // 112 is compile-time constant
```

Bit twiddling

C++) allow for handling integer types as sequences of version to bits" needed: they already are.

ind their uses:

	Set		Flip		Flip all
	00101100		00101100		
	10100111	^	10100111	~	10100111
ĺ	10101111		10001011		01011000

5:44:05 2017 CS61B: Lecture #14 10

Bit twiddling

C++) allow for handling integer types as sequences of version to bits" needed: they already are.

nd their uses:

5:44:05 2017

Set		Flip			Flip all		
		00101100		00101100			
		10100111	^	10100111	~	10100111	
		10101111		10001011		01011000	

CS61B: Lecture #14 9

Bit twiddling

C++) allow for handling integer types as sequences of version to bits" needed: they already are.

ind their uses:

<< n?

>> n?

:44:05 2017

Set		Flip	1	Flip all		
00101100		0010110	0			
10100111		1010011	1 ~	10100111		
10101111		1000101	1	01011000		
	Arit	hmetic Rigl	nt	Logica	l Right	
1 << 3	10	0101101 >>	3	10101	100 >>>	3
0	11	1110101		00010	101	
L) >>>	29 ?		= 7	· ·		

>>> 3) & ((1<<5)-1)?

 $= x \cdot 2^n$.

 $= |x/2^n|$ (i.e., rounded down).

CS61B: Lecture #14 12

Bit twiddling

C++) allow for handling integer types as sequences of version to bits" needed: they already are.

ind their uses:

∽					
	Set		Flip		Flip all
	00101100		00101100		
1	10100111	^	10100111	~	10100111
	10101111		10001011		01011000

```
| Arithmetic Right | Logical Right | 10101101 >> 3 | 10101100 >>> 3 | 10101100 >>> 3 | 10101100 >>> 3 | 10101100 >>> 3 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 1010110101 | 10101101 | 10101101 | 10101101 | 10101101 | 10101101 | 1010110101 | 1010110101 | 1010
```

5:44:05 2017 CS61B: Lecture #14 11

