
CS61B Lecture #15: Complexity

16:40:25 2016 CS61B: Lecture #15 1

What Are the Questions?

principal concern throughout engineering:

engineer is someone who can do for a dime what any fool
for a dollar.”

mean

Operational cost (for programs, time to run, space requirements).

Development costs: How much engineering time? When deliv-

of failure: How robust? How safe?

program fast enough? Depends on:

what purpose;

input data.

space (memory, disk space)?

depends on what input data.

scale, as input gets big?

16:40:25 2016 CS61B: Lecture #15 2

Enlightening Example

Scan a text corpus (say 107 bytes or so), and find and print
frequently used words, together with counts of how often

(Knuth): Heavy-Duty data structures

Trie implementation, randomized placement, pointers ga-
several pages long.

(Doug McIlroy): UNIX shell script:

’[:alpha:]’ ’[\n*]’ < FILE | \

| \

-r -k 1,1 | \

better?

much faster,

took 5 minutes to write and processes 20MB in 1 minute.

#2.

cases, anything will do: Keep It Simple.
16:40:25 2016 CS61B: Lecture #15 3

Cost Measures (Time)

or execution time

do this at home:

time java FindPrimes 1000

Advantages: easy to measure, meaning is obvious.

Appropriate where time is critical (real-time systems, e.g.).

Disadvantages: applies only to specific data set, compiler, ma-
etc.

times certain statements are executed:

Advantages: more general (not sensitive to speed of machine).

Disadvantages: doesn’t tell you actual time, still applies only to
data sets.

execution times:

formulas for execution times as functions of input size.

Advantages: applies to all inputs, makes scaling clear.

Disadvantage: practical formula must be approximate, may tell
little about actual time.

16:40:25 2016 CS61B: Lecture #15 4

Asymptotic Cost

execution time lets us see shape of the cost function.

are approximating anyway, pointless to be precise about
things:

Behavior on small inputs:

always pre-calculate some results.

Times for small inputs not usually important.

Constant factors (as in “off by factor of 2”):

changing machines causes constant-factor change.

abstract away from (i.e., ignore) these things?

16:40:25 2016 CS61B: Lecture #15 5

Handy Tool: Order Notation

Don’t try to produce specific functions that specify size, but
families of similar functions.

something like “f is bounded by g if it is in g’s family.”

function g(x), the functions 2g(x), 1000g(x), or for any K >
, all have the same “shape”. So put all of them into g’s

function h(x) such that h(x) = K · g(x) for x > M (for some
) has g’s shape “except for small values.” So put all of

’s family.

want upper limits, throw in all functions that are everywhere
member of g’s family. Call this family O(g) or O(g(n)).

want lower limits, throw in all functions that are every-
some member of g’s family. Call this family Ω(g).

define Θ(g) = O(g) ∩ Ω(g)—the set of functions bracketed
members of g’s family.

16:40:25 2016 CS61B: Lecture #15 6

Big Oh

Specify bounding from above.

2g(x)

g(x)

f(x)

M = 1

≤ 2g(x) as long as x > 1,

in g’s upper-bound family, written

f(x) ∈ O(g(x)),

though f(x) > g(x) everywhere.

16:40:25 2016 CS61B: Lecture #15 7

Big Omega

Specify bounding from below:

g(x)

0.5g(x)

f ′(x)

M = 1

≥ 1
2
g(x) as long as x > 1,

in g’s lower-bound family, written

f ′(x) ∈ Ω(g(x)),

though f(x) < g(x) everywhere.

case, also have f ′(x) ∈ O(g(x)) and f(x) ∈ Ω(g(x)), so

f(x), f ′(x) ∈ Θ(g(x)).

16:40:25 2016 CS61B: Lecture #15 8

Why It Matters

scientists often talk as if constant factors didn’t matter
the difference of Θ(N) vs. Θ(N 2).

they do, but at some point, constants always get swamped.

n
√
n n n lg n n2 n3 2n

1.4 2 2 4 8 4
2 4 8 16 64 16
2.8 8 24 64 512 256
4 16 64 256 4, 096 65, 636
5.7 32 160 1024 32, 768 4.2× 109

8 64 384 4, 096 262, 144 1.8× 1019

112 11 128 896 16, 384 2.1× 109 3.4× 1038
...

160 32 1, 024 10, 240 1.0× 106 1.1× 109 1.8× 10308
...

320 1024 1.0× 106 2.1× 107 1.1× 1012 1.2× 1018 6.7× 10315,652

16:40:25 2016 CS61B: Lecture #15 9

Some Intuition on Meaning of Growth

problem can you solve in a given time?

following table, left column shows time in microseconds to
given problem as a function of problem size N .

show the size of problem that can be solved in a second,
month (31 days), and century, for various relationships be-

required and problem size.

problem size

sec) for Max N Possible in
size N 1 second 1 hour 1 month 1 century

10300000 101000000000 108·10
11

109·10
14

106 3.6 · 109 2.7 · 1012 3.2 · 1015
N 63000 1.3 · 108 7.4 · 1010 6.9 · 1013

1000 60000 1.6 · 106 5.6 · 107
100 1500 14000 150000
20 32 41 51

16:40:25 2016 CS61B: Lecture #15 10

Using the Notation

this order notation for any kind of real-valued function.

use them to describe cost functions. Example:

position of X in list L, or -1 if not found. */

(List L, Object X) {
;

(c = 0; L != null; L = L.next, c += 1)

(X.equals(L.head)) return c;

return -1;

representative operation: number of .equals tests.

length of L, then loop does at most N tests: worst-case
tests.

total # of instructions executed is roughly proportional
the worst case, so can also say worst-case time is O(N),

of units used to measure.

provision (in defn. of O(·)) to handle empty list.

16:40:25 2016 CS61B: Lecture #15 11

Be Careful

true that the worst-case time is O(N 2), since N ∈ O(N 2)
Big-Oh bounds are loose.

worst-case time is Ω(N), since N ∈ Ω(N), but that does not
the loop always takes time N , or even K ·N for some K.

we are just saying something about the function that maps
the largest possible time required to process an array of

much as possible about our worst-case time, we should try
bound: in this case, we can: Θ(N).

that still tells us nothing about best-case time, which
when we find X at the beginning of the loop. Best-case time

16:40:25 2016 CS61B: Lecture #15 12

Effect of Nested Loops

loops often lead to polynomial bounds:

i = 0; i < A.length; i += 1)

int j = 0; j < A.length; j += 1)

(i != j && A[i] == A[j])

return true;

false;

time is O(N 2), where N = A.length. Worst-case time is

inefficient though:

i = 0; i < A.length; i += 1)

int j = i+1; j < A.length; j += 1)

(A[i] == A[j]) return true;

false;

worst-case time is proportional to

N − 1 +N − 2 + . . . + 1 = N(N − 1)/2 ∈ Θ(N 2)

asymptotic time unchanged by the constant factor).

16:40:25 2016 CS61B: Lecture #15 13

Recursion and Recurrences: Fast Growth

example of recursion. In the worst case, both recursive calls

iff X is a substring of S */

occurs(String S, String X) {
(S.equals(X)) return true;

(S.length() <= X.length()) return false;

occurs(S.substring(1), X) ||

occurs(S.substring(0, S.length()-1), X);

N) to be the worst-case cost of occurs(S,X) for S of
of fixed size N0, measured in # of calls to occurs. Then

C(N) =







1, if N ≤ N0,
2C(N − 1) + 1 if N > N0

grows exponentially:

(N − 1) + 1 = 2(2C(N − 2) + 1) + 1 = . . . = 2(· · · 2
︸ ︷︷ ︸

N−N0

·1 + 1) + . . . + 1

−N0 + 2N−N0−1 + 2N−N0−2 + . . . + 1 = 2N−N0+1 − 1 ∈ Θ(2N)

16:40:25 2016 CS61B: Lecture #15 14

Binary Search: Slow Growth

iff is an element of S[L .. U]. Assumes

ascending order, 0 <= L <= U-1 < S.length. */

String X, String[] S, int L, int U) {
return false;

(L+U)/2;

= X.compareTo(S[M]);

< 0) return isIn(X, S, L, M-1);

(direct > 0) return isIn(X, S, M+1, U);

true;

worst-case time, C(D), (as measured by # of string compar-
depends on size D = U − L + 1.

eliminate S[M] from consideration each time and look at half the
Assume D = 2k − 1 for simplicity, so:

C(D) =







0, if D ≤ 0,
1 + C((D − 1)/2), if D > 0.

= 1 + 1 + . . . + 1
︸ ︷︷ ︸

k

+0

= k = ⌈lgD⌉ ∈ Θ(lgD)

16:40:25 2016 CS61B: Lecture #15 15

Another Typical Pattern: Merge Sort

List L) {
(L.length() < 2) return L;

L0 and L1 of about equal size;
sort(L0); L1 = sort(L1);

Merge of L0 and L1







Merge (“combine into a single or-
dered list”) takes time proportional
to size of its result.

that size of L is N = 2k, worst-case cost function, C(N),
just merge time (∝ # items merged):

C(N) =







1, if N < 2;
2C(N/2) +N, if N ≥ 2.

= 2(2C(N/4) +N/2) +N

= 4C(N/4) +N +N

= 8C(N/8) +N +N +N

= N · 1 +N +N + . . . +N
︸ ︷︷ ︸

k=lgN

= N +N lgN ∈ Θ(N lgN)

general, Θ(N lgN) for arbitrary N (not just 2k).

16:40:25 2016 CS61B: Lecture #15 16

	CS61B Lecture #15: Complexity
	What Are the Questions?
	Enlightening Example
	Cost Measures (Time)
	Asymptotic Cost
	Handy Tool: Order Notation
	Big Oh
	Big Omega
	Why It Matters
	Some Intuition on Meaning of Growth
	Using the Notation
	Be Careful
	Effect of Nested Loops
	Recursion and Recurrences: Fast Growth
	Binary Search: Slow Growth
	Another Typical Pattern: Merge Sort

