What Are the Questions?

cipal concern throughout engineering:

eer is someone who can do for a dime what any fool
a dollar.”

n

al cost (for programs, time to run, space requirements).
ent costs: How much engineering time? When deliv-

ailure: How robust? How safe?
am fast enough? Depends on:
purpose;

t data.

ace (memory, disk space)?
lends on what input data.

tale, as input gets big?

:40:25 2016 CS61B: Lecture #15 2

Cost Measures (Time)

r execution time

o this at home:

2 java FindPrimes 1000

2s: easy to measure, meaning is obvious.

ite where time is critical (real-time systems, e.g.).
ages: applies only to specific data set, compiler, ma-

imes certain statements are executed:

2s: more general (not sensitive to speed of machine).
ages: doesn't tell you actual time, still applies only to
ata sets.

zcution times:

ormulas for execution times as functions of input size.
2s: applies to all inputs, makes scaling clear.

age: practical formula must be approximate, may tell
: about actual time.

5:40:25 2016 CS61B: Lecture #15 4

Handy Tool: Order Notation

try to produce specific functions that specify size, but
fes of similar functions.

ng like " f is bounded by g if it is in g's family.”

tion g(x), the functions 2g(z), 1000g(z), or for any K >
all have the same “shape”. So put all of them into g's

\ h(z) such that h(z) = K - g(x) for x > M (for some
"has ¢'s shape “except for small values." So put all of
‘amily.

ipper limits, throw in all functions that are everywhere
ber of ¢'s family. Call this family O(g) or O(g(n)).

int lower limits, throw in all functions that are every-
\e member of g's family. Call this family Q(g).

1e O(g) = O(g) N Q(g)—the set of functions bracketed
of g's family.

5:40:25 2016 CS61B: Lecture #15 6

[S61B Lecture #15: Complexity

:40:25 2016 CS61B: Lecture #15 1

Enlightening Example

| a text corpus (say 107 bytes or so), and find and print
:quently used words, together with counts of how often

nuth): Heavy-Duty data structures

> implementation, randomized placement, pointers ga-
ral pages long.

youg McIlroy): UNIX shell script:
>[:alpha:1’ ’[\n*]’ < FILE | \

\
-k 1,1 |\

ter?
h faster,
ok 5 minutes to write and processes 20MB in 1 minute.

s, anything will do: Keep It Simple.

5:40:25 2016 CS61B: Lecture #15 3

Asymptotic Cost

zcution time lets us see shape of the cost function.

2 approximating anyway, pointless to be precise about
Is:

on small inputs:

ays pre-calculate some results.

‘or small inputs not usually important.

factors (as in "off by factor of 2"):

langing machines causes constant-factor change.

ract away from (i.e., ighore) these things?

5:40:25 2016 CS61B: Lecture #15 5

Big Omega

y bounding from below:
M=1

ne Intuition on Meaning of Growth

oblem can you solve in a given time?

wving table, left column shows time in microseconds to
problem as a function of problem size N.

J the size of problem that can be solved in a second,
(31 days), and century, for various relationships be-
‘equired and problem size.

Be Careful

2 that the worst-case time is O(N?), since N € O(N?)
bounds are loose.

ase time is Q(N), since N € Q(N), but that does not
ie loop always takes time N, or even K - N for some K.

are just saying something about the function that maps
largest possible time required to process an array of

y bounding from above.

M=1

2g(x)

flx)

g(x)

2g(z) as long as = > 1,
g's upper-bound family, written
f(x) € O(g()),

gh f(z) > g(x) everywhere.

:40:25 2016 CS61B: Lecture #15 7

ientists often talk as if constant factors didn't matter
1e difference of O(N) vs. O(N?).

ey do, but at some point, constants always get swamped.

N n nlgn n? n? o
1.4 2 2 4 8 4
2 4 8 16 64 16
2.8 8 24 64 512 256
4 16 64 256 4,096 65, 636
5.7 32 160 1024 32,768 4.2 x 10°
8 64 384 4,096 262,144 1.8 x 10"

11 128 896 16,384 2.1 x 107 3.4 x 10%
32 1,024 10,240 1.0 x 10° 1.1 x 10° 1.8 x 1038

1024 1.0 x 10% 2.1 x 107 1.1 x 10'2 1.2 x 10'® 6.7 x 10312652

5:40:25 2016 CS61B: Lecture #15 9

| size
. S ch as possible about our worst-case time, we should try
F) for Max N Possible in ound: in this case, we can: O(N).
ize N | 1second 1 hour 1 month 1 century
] I M nat still tells us nothing about best-case time, which
b lg(z)aslongas z > 1, 10300000 101000000000 10810 10910 nwe find X at the beginning of the loop. Best-case time
5 | bound famil) 106 3.6-10° 2.7-10" 3.2-10
gs lower- ounl amily, written 7 63000 1.3.108 7.4.101 6.9- 1013
J'(x) € Q(g(x)), 1000 60000 1.6-106 5.6+ 107
bh f(x) < g(z) everywhere. 100 1500 14000 150000
b Qe A =4
also have f'(x) € O(g(z)) and f(x) € Q(g(z)), so 2 32 H o1
f(@), f'(z) € B(g()).
:40:25 2016 CS61B: Lecture #15 8 5:40:25 2016 CS61B: Lecture #15 10 5:40:25 2016 CS61B: Lecture #15 12
Big Oh Why It Matters Using the Notation
9 y 9

order notation for any kind of real-valued function.
‘hem to describe cost functions. Example:
position of X in list L, or -1 if not found. */

[List L, Object X) {

:=0; L !'=null; L = L.next, ¢ += 1)
(X.equals(L.head)) return c;
1 -1;

2sentative operation: number of .equals fests.

th of L, then loop does at most N tests: worst-case
sts.

al # of instructions executed is roughly proportional
worst case, so can also say worst-case time is O(N),
f units used to measure.

provision (in defn. of O(-)) to handle empty list.

5:40:25 2016 CS61B: Lecture #15 11

rsion and Recurrences: Fast Growth

e of recursion. In the worst case, both recursive calls

ff X is a substring of S */
furs(String S, String X) {

hals(X)) return true;

ngth() <= X.length()) return false;

S.substring(1), X) ||
S.substring(0, S.length()-1), X);

to be the worst-case cost of occurs(S,X) for S of
f fixed size Ny, measured in # of calls to occurs. Then
1, if N <N,

CIN =V 20(N=1)+1 if N > Ny

ws exponentially:

N—-1)+1=22C(N-2)+1)+1=...=2(---2.1+1)+...+1
N-Ny
Mo oN=No=l oN=No=2 11 = 2NN 1 € g(27)

:40:25 2016 CS61B: Lecture #15 14

sther Typical Pattern: Merge Sort

L) {

1() < 2) return L;

D and L1 of about equal size;
)); L1 = sort(Ll);

e of LO and L1

Merge (“combine into a single or-
dered list") takes time proportional
to size of its result.

at size of L is N = 2, worst-case cost function, C(N),
f merge time (o< # items merged):

1, if N <2
CN) =\ 2o(N/2) + N, if N > 2.
= 2(2C(N/4)+ N/2)+ N
4C(N/4)+ N+ N
8C(N/8)+ N+ N+ N

=N-1+4N+N+.. +N
k=lgN
— N+NlgN e O(NIgN)

)(Nlg N) for arbitrary N (not just 2).

5:40:25 2016 CS61B: Lecture #15 16

Effect of Nested Loops

often lead to polynomial bounds:

i =0; i < A.length; i += 1)
nt j = 0; j < A.length; j += 1)
(1 !'= 3 && A[i] == A[jD)
return true;

llse;

is O(N?), where N = A.length. Worst-case time is

icient though:

i =0; i < A.length; i += 1)

nt j = i+l; j < A.length; j += 1)
(A[i] == A[j]) return true;

llse;

ase time is proportional to
—1+N—-2+...+1=N(N—-1)/2 € O(N?)
ic time unchanged by the constant factor).

:40:25 2016 CS61B: Lecture #15 13

Binary Search: Slow Growth

! is an element of S[L .. U]. Assumes
\ding order, 0 <= L <= U-1 < S.length. */
string X, String[l S, int L, int U) {
return false;

N/2;

: X.compareTo(S[M]);

¢ 0) return isIn(X, S, L, M-1);

rect > 0) return isIn(X, S, M+1, U);
true;

-case time, C'(D), (as measured by # of string compar-
idsonsize D=U — L+1.

: S[M] from consideration each time and look at half the
2 D = 2" — 1 for simplicity, so:

0 if D<O0,

CP) = eup—-1)2), ifD >0
=14+1+...4+1+40
k
— k=TlgD] € &Iz D)
5:40:25 2016 CS61B: Lecture #15 15

	CS61B Lecture #15: Complexity
	What Are the Questions?
	Enlightening Example
	Cost Measures (Time)
	Asymptotic Cost
	Handy Tool: Order Notation
	Big Oh
	Big Omega
	Why It Matters
	Some Intuition on Meaning of Growth
	Using the Notation
	Be Careful
	Effect of Nested Loops
	Recursion and Recurrences: Fast Growth
	Binary Search: Slow Growth
	Another Typical Pattern: Merge Sort

