What Are the Questions?

cipal concern throughout engineering:

eer is someone who can do for a dime what any fool - a dollar."
an
lal cost (for programs, time to run, space requirements) ent costs: How much engineering time? When deliv-
ailure: How robust? How safe?
am fast enough? Depends on:
purpose;
ıt data.
ace (memory, disk space)?
ends on what input data.
zale, as input gets big?
p:40:25 2016
CS61B: Lecture \#15 2

:S61B Lecture \#15: Complexity

Cost Measures (Time)

execution time

0 this at home:
e java FindPrimes 1000
es: easy to measure, meaning is obvious.
te where time is critical (real-time systems, e.g.).
ages: applies only to specific data set, compiler, ma-
imes certain statements are executed:
es: more general (not sensitive to speed of machine).
ages: doesn't tell you actual time, still applies only to ata sets.
ecution times:
ormulas for execution times as functions of input size es: applies to all inputs, makes scaling clear.
age: practical formula must be approximate, may tell about actual time.
p:40:25 2016
CS618: Lecture \#15 4

Enlightening Example

a text corpus (say 10^{7} bytes or so), and find and print :quently used words, together with counts of how often
nuth): Heavy-Duty data structures
e implementation, randomized placement, pointers garal pages long.
poug McIlroy): UNIX shell script:
'[:alpha:]' '[\n*]' < FILE | \}
\backslash
r-k 1,1 | \}
ter?
h faster,
ok 5 minutes to write and processes 20 MB in 1 minute
s, anything will do: Keep It Simple.
;:40:25 2016

Handy Tool: Order Notation

try to produce specific functions that specify size, but ies of similar functions.
ng like " f is bounded by g if it is in g 's family."
tion $g(x)$, the functions $2 g(x), 1000 g(x)$, or for any $K>$ all have the same "shape". So put all of them into g 's

I $h(x)$ such that $h(x)=K \cdot g(x)$ for $x>M$ (for some has g 's shape "except for small values." So put all of amily.
pper limits, throw in all functions that are everywhere ber of g 's family. Call this family $O(g)$ or $O(g(n))$.
int lower limits, throw in all functions that are everyle member of g 's family. Call this family $\Omega(g)$.
e $\Theta(g)=O(g) \cap \Omega(g)$-the set of functions bracketed of g 's family.
:40:25 2016
C561B: Lecture \#15 6

Asymptotic Cost

ecution time lets us see shape of the cost function.
e approximating anyway, pointless to be precise about $\mathrm{s}:$
on small inputs:
ays pre-calculate some results.
or small inputs not usually important.
factors (as in "off by factor of 2"):
anging machines causes constant-factor change.
act away from (i.e., ignore) these things?

Big Omega

y bounding from below:

$\frac{1}{2} g(x)$ as long as $x>1$,
g's lower-bound family, written

$$
f^{\prime}(x) \in \Omega(g(x)),
$$

gh $f(x)<g(x)$ everywhere.
also have $f^{\prime}(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$, so

$$
f(x), f^{\prime}(x) \in \Theta(g(x)) \text {. }
$$

p:40:25 2016
CS61B: Lecture \#15 8

Big Oh

y bounding from above.

$2 g(x)$ as long as $x>1$,
g's upper-bound family, written

$$
f(x) \in O(g(x)),
$$

gh $f(x)>g(x)$ everywhere.

e Intuition on Meaning of Growth

oblem can you solve in a given time?
wing table, left column shows time in microseconds to problem as a function of problem size N.
the size of problem that can be solved in a second, (31 days), and century, for various relationships beequired and problem size.
I size

E) for ze N	Max N Possible in			
	10^{300000}	$10^{1000000000}$	$10^{8.10^{11}}$	$10^{9 \cdot 10^{14}}$
	10^{6}	$3.6 \cdot 10^{9}$	$2.7 \cdot 10^{12}$	$3.2 \cdot 10^{15}$
V	63000	$1.3 \cdot 10^{8}$	$7.4 \cdot 10^{10}$	$6.9 \cdot 10^{13}$
	1000	60000	$1.6 \cdot 10^{6}$	$5.6 \cdot 10^{7}$
	100	1500	14000	150000
	20	32	41	51

8:40:25 2016
CS61B: Lecture \#15 10

Why It Matters

ientists often talk as if constant factors didn't matter re difference of $\Theta(N)$ vs. $\Theta\left(N^{2}\right)$.
ey do, but at some point, constants always get swamped.

\sqrt{n}	n	$n \lg n$	n^{2}	n^{3}	2^{n}
1.4	2	2	4	8	4
2	4	8	16	64	16
2.8	8	24	64	512	256
4	16	64	256	4,096	65,636
5.7	32	160	1024	32,768	4.2×10^{9}
8	64	384	4,096	262,144	1.8×10^{19}
11	128	896	16,384	2.1×10^{9}	3.4×10^{38}
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
32	1,024	10,240	1.0×10^{6}	1.1×10^{9}	1.8×10^{308}
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
1024	1.0×10^{6}	2.1×10^{7}	1.1×10^{12}	1.2×10^{18}	$6.7 \times 10^{315,652}$

Be Careful

2 that the worst-case time is $O\left(N^{2}\right)$, since $N \in O\left(N^{2}\right)$ bounds are loose.
ase time is $\Omega(N)$, since $N \in \Omega(N)$, but that does not ie loop always takes time N, or even $K \cdot N$ for some K. are just saying something about the function that maps largest possible time required to process an array of
ch as possible about our worst-case time, we should try ound: in this case, we can: $\Theta(N)$.
hat still tells us nothing about best-case time, which n we find X at the beginning of the loop. Best-case time

5:40:25 2016
CS618: Lecture \#15 12

Using the Notation

order notation for any kind of real-valued function. hem to describe cost functions. Example:
position of X in list L , or -1 if not found. */ (List L, Object X) \{
$=0$; L ! null; L = L.next, c += 1)
(X.equals(L.head)) return c;

1;
esentative operation: number of .equals tests.
th of L, then loop does at most N tests: worst-case sts.
al \# of instructions executed is roughly proportional worst case, so can also say worst-case time is $O(N)$, f units used to measure.
provision (in defn. of $O(\cdot)$) to handle empty list.

rsion and Recurrences: Fast Growth

e of recursion. In the worst case, both recursive calls

Ef X is a substring of S */
curs(String S, String X) \{
aals(X)) return true;
ggth() <= X.length()) return false;
(S.substring(1), X) ||
(S.substring(0, S.length()-1), X);
to be the worst-case cost of occurs (S, X) for S of if fixed size N_{0}, measured in \# of calls to occurs. Then

$$
C(N)= \begin{cases}1, & \text { if } N \leq N_{0} \\ 2 C(N-1)+1 & \text { if } N>N_{0}\end{cases}
$$

ws exponentially:

$$
\begin{aligned}
& N-1)+1=2(2 C(N-2)+1)+1=\ldots=\underbrace{2(\cdots 2}_{N-N_{0}} \cdot 1+1)+\ldots+1 \\
& N_{0}+2^{N-N_{0}-1}+2^{N-N_{0}-2}+\ldots+1=2^{N-N_{0}+1}-1 \in \Theta\left(2^{N}\right) \\
& \text { cs:40:25 2016 Lecture \#15 } 14
\end{aligned}
$$

Effect of Nested Loops

; often lead to polynomial bounds:
i = 0; i < A.length; i += 1)
nt $j=0$; $j<A . l e n g t h ; ~ j ~+=~ 1) ~$
(i != j \&\& A[i] == A[j])
return true;
alse;
is $O\left(N^{2}\right)$, where $N=\mathrm{A}$.length. Worst-case time is
icient though:
i = 0; i < A.length; i += 1)
nt j = i+1; j < A.length; j += 1)
(A[i] == A[j]) return true;
alse;
ase time is proportional to
$-1+N-2+\ldots+1=N(N-1) / 2 \in \Theta\left(N^{2}\right)$
ic time unchanged by the constant factor).
p:40:25 2016
CS618: Lecture \#15 ${ }^{13}$
pther Typical Pattern: Merge Sort

- L) \{

2() < 2) return L 2); $\mathrm{L} 1=\operatorname{sort}(\mathrm{L} 1)$;
e of L0 and L1
and L1 of about equal size: Merge ("combine into a single or
Merge ("combine into a single or to size of its result
at size of L is $N=2^{k}$, worst-case cost function, $C(N)$, - merge time ($\propto \#$ items merged):

$$
\begin{aligned}
C(N) & =\left\{\begin{array}{lr}
1, & \text { if } N<2 ; \\
2 C(N / 2)+N, & \text { if } N \geq 2 .
\end{array}\right. \\
& =2(2 C(N / 4)+N / 2)+N \\
& =4 C(N / 4)+N+N \\
& =8 C(N / 8)+N+N+N \\
& =N \cdot 1+\underbrace{N+N+\ldots}_{k=\lg N} \\
& =N+N \lg N \in \Theta(N \lg N)
\end{aligned}
$$

$\Rightarrow(N \lg N)$ for arbitrary N (not just 2^{k}).
1:40:25 2016
CS61B: Lecture \#15 16

Binary Search: Slow Growth

is an element of S[L .. U]. Assumes
pding order, $0<=\mathrm{L}<=\mathrm{U}-1<$ S.length. */
ptring X, String[] S, int L, int U) \{
eturn false;
ग) $/ 2$;
X. compareTo(S[M]);

- 0) return isIn(X, S, L, M-1) ;
ect > 0) return isIn(X, S, M+1, U);
true;
case time, $C(D)$, (as measured by \# of string comparids on size $D=U-L+1$.

2. S [M] from consideration each time and look at half the z $D=2^{k}-1$ for simplicity, so:

$$
\begin{aligned}
C(D) & = \begin{cases}0, & \text { if } D \leq 0, \\
1+C((D-1) / 2), & \text { if } D>0\end{cases} \\
& =\underbrace{1+1+\ldots+1}_{k}+0 \\
& =k=\lceil\lg D\rceil \in \Theta(\lg D)
\end{aligned}
$$

