What Are the Questions?

cipal concern throughout engineering:

eer is someone who can do for a dime what any fool
a dollar.”

n

al cost (for programs, time to run, space requirements).
ent costs: How much engineering time? When deliv-

ailure: How robust? How safe?
am fast enough? Depends on:
purpose;

t data.

ace (memory, disk space)?
lends on what input data.

tale, as input gets big?

:23:18 2017 CS61B: Lecture #16 2

Cost Measures (Time)

r execution time

o this at home:

2 java FindPrimes 1000

2s: easy to measure, meaning is obvious.

ite where time is critical (real-time systems, e.g.).
ages: applies only to specific data set, compiler, ma-

imes certain statements are executed:

2s: more general (not sensitive to speed of machine).
ages: doesn't tell you actual time, still applies only to
ata sefts.

zcution times:

ormulas for execution times as functions of input size.
2s: applies to all inputs, makes scaling clear.

age: practical formula must be approximate, may tell
: about actual time.

1:23:18 2017 CS61B: Lecture #16 4

Handy Tool: Order Notation

try to produce specific functions that specify size, but
fes of similar functions.

ng like " f is bounded by g if it is in g's family.”

tion g(x), the functions 2g(z), 1000g(z), or for any K >
all have the same “shape”. So put all of them into g's

\ h(z) such that h(z) = K - g(x) for x > M (for some
"has ¢'s shape “except for small values." So put all of
‘amily.

ipper limits, throw in all functions that are everywhere
ber of ¢'s family. Call this family O(g) or O(g(n)).

int lower limits, throw in all functions that are every-
\e member of g's family. Call this family Q(g).

1e O(g) = O(g) N Q(g)—the set of functions bracketed
ders of ¢'s family.

1:23:18 2017 CS61B: Lecture #16 6

[S61B Lecture #16: Complexity

contest 14 October. Details to follow.

:23:18 2017 CS61B: Lecture #16 1

Enlightening Example

| a text corpus (say 107 bytes or so), and find and print
:quently used words, together with counts of how often

nuth): Heavy-Duty data structures

> implementation, randomized placement, pointers ga-
ral pages long.

youg McIlroy): UNIX shell script:
>[:alpha:1’ ’[\n*]’ < FILE | \

\
-k 1,1 |\

ter?
h faster,
1ok 5 minutes to write and processes 30MB in < 8 sec.

s, anything will do: Keep It Simple.

1:23:18 2017 CS61B: Lecture #16 3

Asymptotic Cost

zcution time lets us see shape of the cost function.

2 approximating anyway, pointless to be precise about
Is:

on small inputs:

ays pre-calculate some results.

‘or small inputs not usually important.

factors (as in "off by factor of 2"):

langing machines causes constant-factor change.

ract away from (i.e., ighore) these things?

1:23:18 2017 CS61B: Lecture #16 5

Big Omega

y bounding from below:

How We Use Order Notation

| mathematics, you'll see Of...), etc., used generally to
ds on functions.

ne Intuition on Meaning of Growth

oblem can you solve in a given time?

wving table, left column shows time in microseconds to
problem as a function of problem size N.

y bounding from above.

M=1

2g(x)

flx)

g(x)

2g(z) as long as = > 1,
g's upper-bound family, written
f(x) € O(g()),

gh (in this case) f(z) > g(x) everywhere.

:23:18 2017 CS61B: Lecture #16 7

previous slides, we not only have f(z) € O(g(x)) and
)
(z) € Qg(x)) and f'(z) € O(g(x)).

warize this all by saying f(z) € ©(g(z)) and f'(x)inO(g(x)).

1:23:18 2017 CS61B: Lecture #16 9

]\T
7m(N) = Q(W) J the size of problem that can be solved in a second,
d prefer to write n (31 days), and century, for various relationships be-
P ‘equired and problem size.
N
N)eo(— :
m(N) € (ln N) | size
is the number of primes less than or equal to N.) c) for Max N Possible in
2e things like ize N | 1second 1 hour Imonth 1century
. 300000 1000000000 810" 910"
f(z) =2*+ 2> + O(x), 10 10 10 10910
b ig(z)aslongasz > 1, X (1 n @ o 100 3.6-10° 2.7-101 3.2-10
T flx) =27+ 2"+ g(r) where g(z) € O(x). ‘ 3 ey 10 13
g's lower-bound family, written /(@) 9() 9la) () / 63000 13 10 "4,' 10(6'9,' 107
,) oses, the functions we will be bounding will be cost func- 1000 60000 1.6-10° 5.6-10
f'(@) € Q(g(x)), ons that measure the amount of execution time or the 100 1500 14000 150000
bh f(z) < g(z) everywhere.)ace required by a program or algorithm. 20 32 41 51
23:18 2017 CS61B: Lecture #16 8 1:23:18 2017 CS61B: Lecture #16 10 1:23:18 2017 CS61B: Lecture #16 12
Big Oh Big Theta Why It Matters

ientists often talk as if constant factors didn't matter
1e difference of O(NV) vs. O(N?).
ey do matter, but at some point, constants always get

L /n n nlgn n? n? 2"
1.4 2 2 4 8 4
2 4 8 16 64 16
2.8 8 24 64 512 256
4 16 64 256 4,096 65, 636
5.7 32 160 1024 32,768 4.2 x 109
8 64 384 4,096 262,144 1.8 x 10"
11 128 896 16,384 2.1 x 10° 3.4 x 10%

32 1,024 10,240 1.0 x 105 1.1 x 107 1.8 x 10%%

1024 1.0 x 10° 2.1 x 107 1.1 x 102 1.2 x 10 6.7 x 10315652

1:23:18 2017 CS61B: Lecture #16 11

Be Careful

e that the worst-case time is O(N?), since N € O(N?)
bounds are loose.

pse time is QU(N), since N € Q(N), but that does not
e loop always takes time N, or even K - N for some K.

are just saying something about the function that maps
argest possible time required to process an array of

ch as possible about our worst-case time, we should try
ound: in this case, we can: O(N).

nat still tells us nothing about best-case time, which
n we find X at the beginning of the loop. Best-case time

:23:18 2017 CS61B: Lecture #16 14

rsion and Recurrences: Fast Growth

2 of recursion. In the worst case, both recursive calls

ff X is a substring of S */
curs(String S, String X) {

1als(X)) return true;

ngth() <= X.length()) return false;

(S.substring(1), X) ||
(S.substring(0, S.length()-1), X);

) to be the worst-case cost of occurs(S,X) for S of
f fixed size Ny, measured in # of calls to occurs. Then
_ L if N <N,
CN)=1o0(N 1) +1 i N> N,
ws exponentially:

N-1)+1=22C(N-2)+1)+1=...=2
N-N,
No g gN=No-1 y oN=No=2 4 4 1 = 9NN+l _ | ¢ g2V

1:23:18 2017 CS61B: Lecture #16 16

sther Typical Pattern: Merge Sort

L) {

1() < 2) return L; " . . . 5
) and L1 of about equal size; Merge (C”omblne Ifl‘ro a Smgleﬂ or
D: L1 = sort(Ll): dered list") takes time proportional

e of LO and L1 to size of its result.

at size of L is N = 2, worst-case cost function, C(N),
f merge time (o< # items merged):

1, if N <2
CN) =\ 2o(N/2) + N, if N > 2.
= 2(2C(N/4)+ N/2)+ N
4C(N/4)+ N+ N
8C(N/8)+ N+ N+ N

=N-1+4N+N+...+N
k=lg N
= N+NIgN € O(NlgN)

)(Nlg N) for arbitrary N (not just 2).

1:23:18 2017 CS61B: Lecture #16 18

Using the Notation

order notation for any kind of real-valued function.
hem to describe cost functions. Example:
position of X in list L, or -1 if not found. */

List L, Object X) {

=0; L !'=null; L = L.next, c += 1)
(X.equals(L.head)) return c;
L -1;

esentative operation: number of .equals tests.

th of L, then loop does at most N tests: worst-case
sts.

ol # of instructions executed is roughly proportional
worst case, so can also say worst-case time is O(N),
f units used to measure.

provision (in defn. of O(-)) to handle empty list.

:23:18 2017 CS61B: Lecture #16 13

Effect of Nested Loops

s often lead to polynomial bounds:

i =0; i < A.length; i += 1)
mt j = 0; j < A.length; j += 1)
(1 !'= 3 && A[i] == A[jD)
return true;

1lse;

L is O(N?), where N = A.length. Worst-case time is

icient though:

i =0; i < A.length; i += 1)

mt j = i+l; j < A.length; j += 1)
(A[i] == A[j]) return true;

1lse;

ase time is proportional to
—1+N—-2+...+1=N(N—-1)/2 € O(N?)
ic time unchanged by the constant factor).

1:23:18 2017 CS61B: Lecture #16 15

Binary Search: Slow Growth

! is an element of S[L .. U]. Assumes
\ding order, 0 <= L <= U-1 < S.length. */
string X, String[l S, int L, int U) {
return false;

N/2;

: X.compareTo(S[M]);

¢ 0) return isIn(X, S, L, M-1);

rect > 0) return isIn(X, S, M+1, U);
true;

-case time, C'(D), (as measured by # of string compar-
idsonsize D=U — L+1.

: S[M] from consideration each time and look at half the

2 D = 2" — 1 for simplicity, so:

0, if D<O,

CP) =V eup—-1)2), ifD >0
=1+1+...4+140

k= (1§m € 0(gD)

1:23:18 2017 CS61B: Lecture #16 17

	CS61B Lecture #16: Complexity
	What Are the Questions?
	Enlightening Example
	Cost Measures (Time)
	Asymptotic Cost
	Handy Tool: Order Notation
	Big Oh
	Big Omega
	Big Theta
	How We Use Order Notation
	Why It Matters
	Some Intuition on Meaning of Growth
	Using the Notation
	Be Careful
	Effect of Nested Loops
	Recursion and Recurrences: Fast Growth
	Binary Search: Slow Growth
	Another Typical Pattern: Merge Sort

