?: Let's Write a Program: Prime Numbers

java Primes U to print prime numbers through U. ra Primes 101
$\begin{array}{lllllllll}3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29\end{array}$
374143475359616771
79838997101
prime number is an integer greater than 1 that has no than itself other than 1.
$N / k \geq \sqrt{N}$, for $N, k>0$
N then N / k divides N.
ential divisors up to and including the square root.

59:09 2017
CS618: Lecture \#2 2
\square

Administrivia

sure you have obtained a Unix account. If you are a nrollment student not yet on our lists, please tell a TA in have you added to those eligible to receive an account.
\dagger complete Lab \#1, please try to do so over the weekend r are due Friday midnight). It is especially important to entral reppository.
e not to take this course after all, please tell CalCentral at we can adjust the waiting list accordingly.
on the waiting list should find a lab section that is open, self from the waiting list, and re-add with this open lab waiting list is processed twice daily.
up; due next Friday at midnight. You get credit for any put we suggest you give the problems a serious try

Testing for Primes

```
boolean isPrime(int x) {
```


se;

sDivisible(x, 2); // "!" means "not"
is divisible by any positive number $>=\mathrm{K}$ and $<\mathrm{X}$

1. */
boolean isDivisible(int x, int k) \{
// a "guard"
se;
! k == 0) // "\%" means "remainder"
1e;
(k < x \&\& x \% k ! = 0)
ivisible(x, k+1);

59:092017
CS61B: Lecture \#2 4

Plan

Primes \{
-l primes up to ARGS[0] (interpreted as an
, 10 to a line. */
c void main(String[] args) \{
ps(Integer.parseInt (args[0]));
.l primes up to and including LIMIT, 10 to */
:ic void printPrimes(int limit) \{
ery integer, x , between 2 and LIMIT, print it if he(x), 10 to a line. \}*/

X is prime */
ic boolean isPrime(int x) \{
X is prime) $* /$;

Iteration

is tail recursive, and so creates an iterative process.
Algol family" production languages have special syntax
Four equivalent versions of isDivisible:

$$
\mathrm{k}==0 \text {) }
$$

$$
\begin{aligned}
& \text { while }(\mathrm{k}<\mathrm{x}) \text {) } / /!(\mathrm{k}>=\mathrm{x}) \\
& \text { if (} \mathrm{x} \% \mathrm{k}==0 \text {) } \\
& \text { return true; } \\
& \mathrm{k}=\mathrm{k}+1 \text {; } \\
& \text { // or } \mathrm{k}+=1 \text {, or (} \mathrm{yuch} \text {) } \mathrm{k}++ \\
& \text { \} } \\
& \text { return false; }
\end{aligned}
$$

e;
ivisible($x, \underline{k+1}$)

```
X) {
==0
```

for (int k1 = k; k1 < x; k1 += 1) \{
if ($\mathrm{x} \% \mathrm{k} 1==0)$
\quad return true;
\}
return false;

Thinking Recursively

check isDivisible $(13,2)$ by tracing one level.

- Call assigns $\mathrm{x}=13, \mathrm{k}=2$
divisible by
$>=K$ and $<X$,
p=K
*/
plean isDivisible.
$=0$)
isible ($\mathrm{x}, \mathrm{k}+1$);
nents aid understanding. it!
- Body has form 'if (k >= x) S_{1} else $S_{2}{ }^{\prime}$.
- Since $2<13$, we evaluate the first else.
- Check if $13 \bmod 2=0$; it's not.
- Left with isDivisible $(13,3)$.
- Rather than tracing it, instead use the comment:
- Since 13 is not divisible by any integer in the range $3 . .12$ (and $3>1$), isDivisible $(13,3)$ mus \dagger be false, and we're done!
- Sounds like that last step begs the question. Why doesn't it?
nal Task: printPrimes (Simplified)
primes up to and including LIMIT. */ void printPrimes(int limit) \{

printPrimes (full version)

primes up to and including LIMIT, 10 to

```
void printPrimes(int limit) {
```

= 2; p <= limit; $\mathrm{p}+=1$) \{
Prime(p)) \{
stem.out.print (p + " ");
p $+=1$;
(np \% $10==0$)
System.out.println();
$0!=0$)
1.out.println();

99:092017
CS618: Lecture \#2 10

Simplified printPrimes Solution

primes up to and including LIMIT. */
E void printPrimes(int limit) \{
$p=2 ; p<=$ limit; $p+=1)$ \{
Prime(p)) \{
stem.out. print($\mathrm{p}+\mathrm{"}$ ");
. println();
tic boolean isDivisible(int x , int k) \{
= Math.round(Math.sqrt(x));
$\mathrm{k} 1=\mathrm{k} ; \mathrm{k} 1<=$ limit; $\mathrm{k} 1+=1$) \{
k1 == 0)
n true;
1se;
litional (blue) condition in the comment?

