
CS61B Lecture #20: Trees

13:56:39 2017 CS61B: Lecture #20 1

A Recursive Structure

naturally represent recursively defined, hierarchical objects
than one recursive subpart for each instance.

examples: expressions, sentences.

Expressions have definitions such as “an expression consists of a
or two expressions separated by an operator.”

describe structures in which we recursively divide a set into
subsets.

13:56:39 2017 CS61B: Lecture #20 2

Formal Definitions

come in a variety of flavors, all defined recursively:

style: A tree consists of a label value and zero or more
branches (or children), each of them a tree.

style, alternative definition: A tree is a set of nodes (or
), each of which has a label value and one or more child
such that no node descends (directly or indirectly) from
node is the parent of its children.

Positional trees: A tree is either empty or consists of a node
containing a label value and an indexed sequence of zero or more
children, each a positional tree. If every node has two positions,

a binary tree and the children are its left and right sub-
Again, nodes are the parents of their non-empty children.

see other varieties when considering graphs.

13:56:39 2017 CS61B: Lecture #20 3

Tree Characteristics (I)

of a tree is a non-empty node with no parent in that tree
might be in some larger tree that contains that tree as

subtree). Thus, every node is the root of a (sub)tree.

of a node (or tree) is its number of children.

node has no children (no non-empty children in the case of
trees).

number of children of a node is the order of the node.

of a k-ary tree each have at most k children. (I some-
the term arity for the order a node or maximum order of

13:56:39 2017 CS61B: Lecture #20 4

Tree Characteristics (II)

height of a node in a tree is the smallest distance to a leaf.
leaf has height 0 and a non-empty tree’s height is one
the maximum height of its children. The height of a tree

height of its root.

of a node in a tree is the distance to the root of that
is, in a tree whose root is R, R itself has depth 0 in R,

node S 6= R is in the tree with root R, then its depth is one
than its parent’s.

13:56:39 2017 CS61B: Lecture #20 5

Fundamental Operation: Traversal

a tree means enumerating (some subset of) its nodes.

done recursively, because that is natural description.

are enumerated, we say they are visited.

basic orders for enumeration (+ variations):

Preorder: visit node, traverse its children.

Postorder: traverse children, visit node.

Inorder: traverse first child, visit node, traverse second child
trees only).

6

2

5

4

Postorder

0

1

2 3

4

5

6

Preorder

4

1

0 3

2

5

6

inorder

13:56:39 2017 CS61B: Lecture #20 6

Preorder Traversal and Prefix Expressions

Convert

-

-

*

x +

y 3

z

into (- (- (* x (+ y 3))) z)

Tree<Label> is means “Tree whose labels have type Label.)

toLisp(Tree<String> T) {

null) return "";

(T.degree() == 0) return T.label();

R = "";

i = 0; i < T.numChildren(); i += 1)

" + toLisp(T.child(i));

String.format("(%s%s)", T.label(), R);

13:56:39 2017 CS61B: Lecture #20 7

Inorder Traversal and Infix Expressions

Convert

into ((-(x*(y+3)))-z)
To think about: how to
get rid of all those paren-
theses.

toInfix(Tree<String> T) {

null)

"";

(T.degree() == 0)

T.label();

left = toInfix(T.left()), right = toInfix(T.right());

String.format("(%s%s%s)", left, T.label(), right);

13:56:39 2017 CS61B: Lecture #20 8

Postorder Traversal and Postfix Expressions

Convert

-

-

*

x +

y 3

z

⇒ x y 3 +:2 *:2 -:1 z -:2

toPolish(Tree<String> T) {

null)

"";

R = "";

i = 0; i < T.numChildren(); i += 1)

toPolish(T.child(i)) + " ";

String.format("%s%s:%d", R, T.label(), T.degree());

13:56:39 2017 CS61B: Lecture #20 9

General Traversal: The Visitor Pattern

preorderTraverse(Tree<Label> T, Action<Label> whatToDo)

null) {
whatToDo.action(T);

int i = 0; i < T.numChildren(); i += 1)

preorderTraverse(T.child(i), whatToDo);

Action?

Action<Label> {

(Tree<Label> T);

Java 8 lambda syntax, I can print all labels in the tree in
with:

preorderTraverse(myTree,

(Tree<String> T) -> System.out.print(T.label()));

13:56:39 2017 CS61B: Lecture #20 10

Iterative Depth-First Traversals

recursion conceals data: a stack of nodes (all the T arguments)
extra information. Can make the data explicit:

preorderTraverse2(Tree<Label> T, Action whatToDo) {

Stack<Tree<Label>> s = new Stack<>();

(!s.isEmpty()) {

Tree<Label> node = s.pop();

!= null) {

whatToDo.action(node);

int i = node.numChildren()-1; i >= 0; i -= 1)

s.push(node.child(i)); // Why backward?

breadth-first traversal, use a queue instead of a stack,
push with add, and pop with removeFirst.

breadth-first traversal worst-case linear time in all cases,
linear space for “bushy” trees.

13:56:39 2017 CS61B: Lecture #20 11

Level-Order (Breadth-First) Traversal

Traverse all nodes at depth 0, then depth 1, etc:

0

1

3 4

6

2

5

13:56:39 2017 CS61B: Lecture #20 12

Breadth-First Traversal Implemented

modification to iterative depth-first traversal gives breadth-
traversal. Just change the (LIFO) stack to a (FIFO) queue:

preorderTraverse2(Tree<Label> T, Action whatToDo) {

ArrayDeque<Tree<Label>> s = new ArrayDeque<>(); // (Changed)

(!s.isEmpty()) {

Tree<Label> node = s.remove(); // (Changed)

!= null) {

whatToDo.action(node);

int i = 0; i < node.numChildren(); i += 1) // (Changed)

s.push(node.child(i));

13:56:39 2017 CS61B: Lecture #20 13

Times

traversal algorithms have roughly the form of the boom example
Data Structures—an exponential algorithm.

the role of M in that algorithm is played by the height of
not the number of nodes.

easy to see that tree traversal is linear: Θ(N), where N
of nodes: Form of the algorithm implies that there is one
the root, and then one visit for every edge in the tree.

every node but the root has exactly one parent, and the root
must be N − 1 edges in any non-empty tree.

positional tree, is also one recursive call for each empty tree, but
empty trees can be no greater than kN , where k is arity.

tree (max # children is k), h + 1 ≤ N ≤ kh+1−1

k−1
, where h is

Ω(logk N) = Ω(lgN) and h ∈ O(N).

algorithms look at one child only. For them, time is pro-
to the height of the tree, and this is Θ(lgN), assuming
is bushy—each level has about as many nodes as possible.

13:56:39 2017 CS61B: Lecture #20 14

Breadth-First Traversal: Iterative Deepening

level, k, of the tree from 0 to h, call doLevel(T,k):

doLevel(Tree T, int lev) {

== 0)

T

each non-null child, C, of T {

doLevel(C, lev-1);

breadth-first traversal by repeated (truncated) depth-first
traversals.

doLevel(T, k), we skip (i.e., traverse but don’t visit) the nodes
level k, and then visit at level k, but not their children.

13:56:39 2017 CS61B: Lecture #20 15

Iterative Deepening Time?

0

1

3

8

4

9 10

2

5

11 12

6

13 14

0

1

2

3

height, N be # of nodes.

edges traversed (i.e, # of calls, not counting null nodes).

tree: 1 for level 0, 3 for level 1, 7 for level 2, 15 for level

general (21 − 1) + (22 − 1) + . . . + (2h+1 − 1) = 2h+2 − h ∈ Θ(N),
2h+1 − 1 for this tree.

right leaning) tree: 1 for level 0, 2 for level 2, 3 for level 3.

general (h+1)(h+2)/2 = N(N +1)/2 ∈ Θ(N 2), since N = h+1
kind of tree.

13:56:39 2017 CS61B: Lecture #20 16

Iterators for Trees

iterators are not terribly convenient on trees.

use ideas from iterative methods.

PreorderTreeIterator<Label> implements Iterator<Label> {

Stack<Tree<Label>> s = new Stack<Tree<Label>>();

PreorderTreeIterator(Tree<Label> T) { s.push(T); }

boolean hasNext() { return !s.isEmpty(); }

next() {

Tree<Label> result = s.pop();

int i = result.numChildren()-1; i >= 0; i -= 1)

s.push(result.child(i));

result.label();

remove() { throw new UnsupportedOperationException(); }

(what do I have to add to class Tree first?)

String label : aTree) System.out.print(label + " ");

13:56:39 2017 CS61B: Lecture #20 17

Tree Representation

2. . . 3. . .

Embedded child pointers
optional parent pointers)

0

1. . . 2. . . 3. . .

(b) Array of child pointers
(+ optional parent pointers)

0

1 2 3

2 3

.

child/sibling pointers

0 1 2 3 · · ·

(d) breadth-first array
(complete trees)

13:56:39 2017 CS61B: Lecture #20 18

	CS61B Lecture #20: Trees
	A Recursive Structure
	Formal Definitions
	Tree Characteristics (I)
	Tree Characteristics (II)
	Fundamental Operation: Traversal
	Preorder Traversal and Prefix Expressions
	Inorder Traversal and Infix Expressions
	Postorder Traversal and Postfix Expressions
	A General Traversal: The Visitor Pattern
	Iterative Depth-First Traversals
	Level-Order (Breadth-First) Traversal
	Breadth-First Traversal Implemented
	Times
	Recursive Breadth-First Traversal: Iterative Deepening
	Iterative Deepening Time?
	Iterators for Trees
	Tree Representation

