
Public Service Announcement

will be a grad school panel hosted by the AWE and
this Thursday, October 12, 5-7PM in 540AB Cory. The
give advice to women regarding how to get into grad
the research experience required.”

08:54:47 2017 CS61B: Lecture #21 1

CS61B Lecture #21: Tree Searching

08:54:47 2017 CS61B: Lecture #21 2

Divide and Conquer

(most?) computation is devoted to finding things in response
forms of query.

search for response can be expensive, especially when data
large for primary memory.

to have criteria for dividing data to be searched into
recursively

figure for lgN algorithms: at 1µsec per comparison, could
300000 items in 1 sec.

natural framework for the representation:

decision
data

yes

decision
data

low mid high

08:54:47 2017 CS61B: Lecture #21 3

Binary Search Trees

Search Property:

nodes contain keys, and possibly other data.

in left subtree of node have smaller keys.

in right subtree of node have larger keys.

means any complete transitive, anti-symmetric ordering on

one of x ≺ y and y ≺ x true.

and y ≺ z imply x ≺ z.

simplify, won’t allow duplicate keys this semester).

dictionary database, node label would be (word, definition):
the key.

concreteness here, we’ll just use the standard Java convention
.compareTo.

08:54:47 2017 CS61B: Lecture #21 4

Finding

for 50 and 49:

60

50 91

/** Node in T containing L, or null if none */

static BST find(BST T, Key L) {

if (T == null)

return T;

if (L.compareTo(T.label()) == 0)

return T;

else if (L.compareTo(T.label()) < 0)

return find(T.left(), L);

else

return find(T.right(), L);

}

boxes show which node labels we look at.

looked at proportional to height of tree.

08:54:47 2017 CS61B: Lecture #21 5

Inserting

27

60

91

/** Insert L in T, replacing existing

* value if present, and returning

* new tree. */

static BST insert(BST T, Key L) {

if (T == null)

return new BST(L);

if (L.compareTo(T.label()) == 0)

T.setLabel(L);

else if (L.compareTo(T.label()) < 0)

T.setLeft(insert(T.left(), L));

else

T.setRight(insert(T.right(), L));

return T;

}

edges are set (to themselves, unless initially null).

time proportional to height.

08:54:47 2017 CS61B: Lecture #21 6

Deletion

42

19

16 25

30

27

60

50 91

Initial

42
*

19

16

*

25
*

30
*

60

50 91

27

Remove 27

60

50 91

25

50

19

16 30

*

60
*

91

50

Remove 42

formerly contained 42

08:54:47 2017 CS61B: Lecture #21 7

Deletion Algorithm

60

91

/** Remove L from T, returning new tree. */

static BST remove(BST T, Key L) {

if (T == null)

return null;

if (L.compareTo(T.label()) == 0) {

if (T.left() == null)

return T.right();

else if (T.right() == null)

return T.left();

else {

Key smallest = minVal(T.right()); // ??

T.setRight(remove(T.right(), smallest));

T.setLabel(smallest);

}

}

else if (L.compareTo(T.label()) < 0)

T.setLeft(remove(T.left(), L));

else

T.setRight(remove(T.right(), L));

return T;

}

08:54:47 2017 CS61B: Lecture #21 8

More Than Two Choices: Quadtrees

index information about 2D locations so that items can be
by position.

do so using standard data-structuring trick: Divide and

divide (2D) space into four quadrants, and store items in the
appropriate quadrant. Repeat this recursively with each quadrant

contains more than one item.

definition: a quadtree is either

or

at some position (x, y), called the root, plus

quadtrees, each containing only items that are northwest,
northeast, southwest, and southeast of (x, y).

that if you are looking for point (x′, y′) and the root is not
you are looking for, you can narrow down which of the four
of the root to look in by comparing coordinates (x, y) with

08:54:47 2017 CS61B: Lecture #21 9

Classical Quadtree: Example

•B

•C

•D

A

E

C

D

•D

•A

•B

•C

•E

D

C B A

E

08:54:47 2017 CS61B: Lecture #21 10

Point-region (PR) Quadtrees

a QuadTree to track moving objects, it may be useful to
delete items from a tree: when an object moves, the

that it goes in may change.

to do with the classical data structure above, so we’ll de-
instead:

quadtree consists of a bounding rectangle, B and either

to a small number of items that lie in that rectangle, or

quadtrees whose bounding rectangles are the four quadrants
(all of equal size).

completely empty quadtree can have an arbitrary bounding rect-
you can wait for the first point to be inserted.

08:54:47 2017 CS61B: Lecture #21 11

Example of PR Quadtree

0 5 10 20

A •

B •

• C
• D

E •

F •

≤ 2 points per leaf)

0

A/F B

C/D E

40

20

10

5

08:54:47 2017 CS61B: Lecture #21 12

Navigating PR Quadtrees

item at (x, y) in quadtree T ,

is outside the bounding rectangle of T , or T is empty,
y) is not in T .

Otherwise, if T contains a small set of items, then (x, y) is in T

among these items.

Otherwise, T consists of four quadtrees. Recursively look for
each (however, step #1 above will cause all but one of

bounding boxes to reject the point immediately).

procedure works when looking for all items within some rect-

does not intersect the bounding rectangle of T , or T is
then there are no items in R.

Otherwise, if T contains a set of items, return those that are in
any.

Otherwise, T consists of four quadtrees. Recursively look for
in R in each one of them.

08:54:47 2017 CS61B: Lecture #21 13

Insertion into PR Quadtrees

for inserting a new pointN , assuming maximum occupancy
2, showing initial state =⇒ final state.

(10,10)

=⇒

(0,0)

(10,10)

• N

•

(0,0)

(10,10)

•

•

=⇒

(0,0)

(10,10)

•

•
• N

(10,10)

=⇒

(0,0)

(10,10)

•

•
•

•

• N

(0,0)

(5,5)

•

=⇒

(0,0)

(10,10)

•

• N

08:54:47 2017 CS61B: Lecture #21 14

	Public Service Announcement
	CS61B Lecture #21: Tree Searching
	Divide and Conquer
	Binary Search Trees
	Finding
	Inserting
	Deletion
	Deletion Algorithm
	More Than Two Choices: Quadtrees
	Classical Quadtree: Example
	Point-region (PR) Quadtrees
	Example of PR Quadtree
	Navigating PR Quadtrees
	Insertion into PR Quadtrees

