
CS61B Lecture #22

Backtracking searches, game trees (DSIJ, Section 6.5)

20:55:07 2016 CS61B: Lecture #22 1

Searching by “Generate and Test”

been considering the problem of searching a set of data stored
kind of data structure: “Is x ∈ S?”

suppose we don’t have a set S, but know how to recognize what
after if we find it: “Is there an x such that P (x)?”

know how to enumerate all possible candidates, can use ap-
Generate and Test: test all possibilities in turn.

sometimes be more clever: avoid trying things that won’t work,
example.

happens if the set of possible candidates is infinite?

20:55:07 2016 CS61B: Lecture #22 2

Backtracking Search

Backtracking search is one way to enumerate all possibilities.

Knight’s Tour. Find all paths a knight can travel on a chess-
that it touches every square exactly once and ends up
move from where it started.

example below, the numbers indicate position numbers (knight
0).

knight (N) is stuck; how to handle this?

6

5

4 7

10 2

8 3 0

N 9 1

20:55:07 2016 CS61B: Lecture #22 3

General Recursive Algorithm

PATH a sequence of knight moves starting at ROW, COL

avoids all squares that have been hit already and

up one square away from ENDROW, ENDCOL. B[i][j] is

row i and column j have been hit on PATH so far.

true if it succeeds, else false (with no change to PATH).

initially with PATH containing the starting square, and

starting square (only) marked in B. */

findPath(boolean[][] b, int row, int col,

int endRow, int endCol, List path) {

(path.size() == 64) return isKnightMove(row, col, endRow, endCol);

all possible moves from (row, col)) {

(!b[r][c]) {

= true; // Mark the square

path.add(new Move(r, c));

(findPath(b, r, c, endRow, endCol, path)) return true;

= false; // Backtrack out of the move.

path.remove(path.size()-1);

false;

20:55:07 2016 CS61B: Lecture #22 4

Another Kind of Search: Best Move

the problem of finding the best move in a two-person game.

assign a heuristic value to each possible move and pick
(aka static evaluation). Examples:

of black pieces − number of white pieces in checkers.

weighted sum of white piece values − weighted sum of black
in chess (Queen=9, Rook=5, etc.)

Nearness of pieces to strategic areas (center of board).

misleading. A move might give us more pieces, but set up
devastating response from the opponent.

each move, look at opponent’s possible moves, assume he
best one for him, and use that as the value.

if you have a great response to his response?

organize this sensibly?

20:55:07 2016 CS61B: Lecture #22 5

Game Trees

the space of possible continuations of the game as a tree.

is a position, each edge a move.

5 15 -20 -30 9 10

My move
(maximizing)

Opponent’s move
(minimizing)

My move

Opponent’s move

numbers at the bottom are the values of those final posi-
. Smaller numbers are of more value to my opponent.

should I move? What value can I get if my opponent plays as
possible?

20:55:07 2016 CS61B: Lecture #22 6

Game Trees, Minimax

the space of possible continuations of the game as a tree.

is a position, each edge a move.

-5

-5 -20

15 -20 10

5 15 -20 -30 9 10
* * *

*

My move

Opponent’s move

My move

Opponent’s move

are the values we guess for the positions (larger means
me). Starred nodes would be chosen.

choose child (next position) with maximum value; opponent
minimum value (“Minimax algorithm”)

20:55:07 2016 CS61B: Lecture #22 7

Alpha-Beta Pruning

prune this tree as we search it.

-5

-5 ≤-20

≥ 5
-20

-5 5
-20 -30

*

*

*

My move

Opponent’s move

My move

Opponent’s move

5’ position, I know that the opponent will not choose to
(since he already has a −5 move).

−20’ position, my opponent knows that I will never choose
here (since I already have a −5 move).

20:55:07 2016 CS61B: Lecture #22 8

Cutting off the Search

could traverse game tree to the bottom, you’d be able to
win (if it’s possible).

possible near the end of a game.

Unfortunately, game trees tend to be either infinite or impossibly

choose a maximum depth, and use a heuristic value computed
position alone (called a static valuation) as the value at that

might use iterative deepening (kind of breadth-first search),
the search at increasing depths until time is up.

sophisticated searches are possible, however (take CS188).

20:55:07 2016 CS61B: Lecture #22 9

Overall Search Algorithm

on whose move it is (maximizing player or minimizing player),
search for a move estimated to be optimal in one direction or

will be exhaustive down to a particular depth in the game
that, we guess values.

and β limits:

player does not care about exploring a position further once
knows its value is larger than what the minimizing player knows

get (β), because the minimizing player will never allow that
to come about.

Likewise, minimizing player won’t explore a positions whose value
than what the maximizing player knows he can get (α).

maximizing player will find a move with

current position, search depth −∞, +∞)

player:

current position, search depth −∞, +∞)

20:55:07 2016 CS61B: Lecture #22 10

Some Pseudocode for Searching (One Level)

basic kind of game-tree search is to assign some heuristic
any given position, looking at just the next possible move:

simpleFindMax(Position posn, double alpha, double beta) {
(posn.maxPlayerWon())

return artificial “Move” with value +∞;

(posn.minPlayerWon())

return artificial “Move” with value −∞;

bestSoFar = artificial “Move” with value −∞;

each M = a legal move for maximizing player from posn) {
Position next = posn.makeMove(M);

next.setValue(heuristicEstimate(next));

(next.value() >= bestSoFar.value()) {
bestSoFar = next;

alpha = max(alpha, next.value());

if (beta <= alpha) break;

bestSoFar;

20:55:07 2016 CS61B: Lecture #22 11

One-Level Search for Minimizing Player

simpleFindMin(Position posn, double alpha, double beta) {
(posn.maxPlayerWon())

return artificial “Move” with value +∞;

(posn.minPlayerWon())

return artificial “Move” with value −∞;

bestSoFar = artificial “Move” with value +∞;

each M = a legal move for minimizing player from posn) {
Position next = posn.makeMove(M);

next.setValue(heuristicEstimate(next));

(next.value() <= bestSoFar.value()) {
bestSoFar = next;

beta = min(beta, next.value());

if (beta <= alpha) break;

bestSoFar;

20:55:07 2016 CS61B: Lecture #22 12

Pseudocode for Searching (Maximizing Player)

best move for maximizing player from POSN, searching

DEPTH. Any move with value >= BETA is also

enough". */

Position posn, int depth, double alpha, double beta) {
== 0 || gameOver(posn))

return simpleFindMax(posn, alpha, beta);

bestSoFar = artificial “Move” with value −∞;

each M = a legal move for maximizing player from posn) {
Position next = posn.makeMove(M);

response = findMin(next, depth-1, alpha, beta);

(response.value() >= bestSoFar.value()) {
bestSoFar = next;

next.setValue(response.value());

alpha = max(alpha, response.value());

if (beta <= alpha) break;

bestSoFar;

20:55:07 2016 CS61B: Lecture #22 13

Pseudocode for Searching (Minimizing Player)

best move for minimizing player from POSN, searching

DEPTH. Any move with value <= ALPHA is also

enough". */

Position posn, int depth, double alpha, double beta) {
== 0 || gameOver(posn))

return simpleFindMin(posn, alpha, beta);

bestSoFar = artificial “Move” with value +∞;

each M = a legal move for minimizing player from posn) {
Position next = posn.makeMove(M);

response = findMax(next, depth-1, alpha, beta);

(response.value() <= bestSoFar.value()) {
bestSoFar = next;

next.setValue(response.value());

beta = min(beta, response.value());

if (beta <= alpha) break;

bestSoFar;

20:55:07 2016 CS61B: Lecture #22 14

	CS61B Lecture #22
	Searching by ``Generate and Test''
	Backtracking Search
	General Recursive Algorithm
	Another Kind of Search: Best Move
	Game Trees
	Game Trees, Minimax
	Alpha-Beta Pruning
	Cutting off the Search
	Overall Search Algorithm
	Some Pseudocode for Searching (One Level)
	One-Level Search for Minimizing Player
	Some Pseudocode for Searching (Maximizing Player)
	Some Pseudocode for Searching (Minimizing Player)

