Priority Queues, Heaps

le: defined by operations "add," "find largest," "remove

cheduling long streams of actions to occur at various

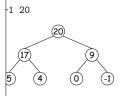
or sorting (keep removing largest).

ementation is the heap, a kind of tree.

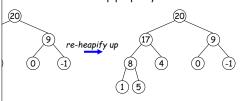
this same term is used to described the pool of storage operator uses. Sorry about that.)

41:45 2016 CS61B: Lecture #23 2

CS61B Lecture #23


es (Data Structures $\S6.4, \S6.5$)

S: SortedSet, Map, etc.


s (§6.2)

Hashing (Data Structures Chapter 7).

imple: Inserting into a simple heap

boxes show where heap property violated

41:45 2016 CS61B: Lecture #23 4

Heaps

is a binary tree that enforces the

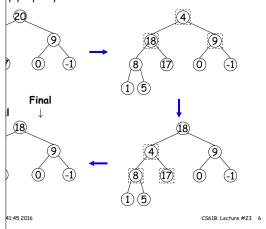
perty: Both labels in both children of each node are node's label.

pp has largest label.

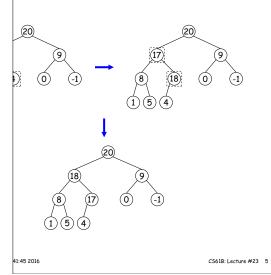
binary search property, which allows us to keep tree

always valid to put the smallest nodes anywhere at the

can be made *nearly complete*: all but possibly the last many keys as possible.


insertion of new value and deletion of largest value alme proportional to $\lg N$ in worst case.

s basically the same, but with the minimum value at the dren having larger values than their parents.


41:45 2016 CS61B: Lecture #23 3

Removing Largest from Heap

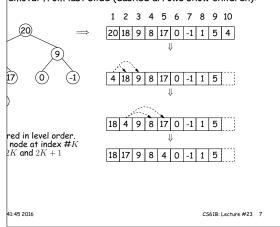
gest: Move bottommost, rightmost node to top, then as needed (swap offending node with larger child) to ap property.

Heap insertion continued

41:45 2016 CS61B: Lecture #23 1

Ranges

looked for specific items


s, need an ordering anyway, and can also support looking f values.

rform some action on all values in a BST that are within in natural order):

Heaps in Arrays

are nearly complete (missing items only at bottom level), vs for compact representation.

emoval from last slide (dashed arrows show children):

red Sets and Range Queries in Java

Set supports range queries with views of set:

 \sharp (U): subset of S that is < U.

t(L): subset that is $\geq L$.

(L,U): subset that is \geq L, < U.

iews modify S.

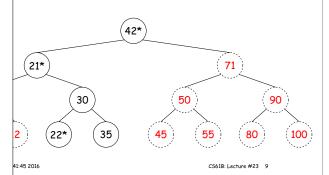
41:45 2016

, e.g., add to a headSet beyond U are disallowed.

hrough a view to process a range:

```
String> fauna = new TreeSet<String>
ys.asList ("axolotl", "elk", "dog", "hartebeest", "duck"));
y item: fauna.subSet ("bison", "gnu"))
out.printf ("%s, ", item);
dog, duck, elk,"

type TreeSet<T> requires either that T be Comparable,
rovide a Comparator:
String> rev_fauna = new TreeSet<String> (Collections.reverseOrder());
```


CS61B: Lecture #23 10

Time for Range Queries

ge query $\in O(h+M)$, where h is height of tree, and M data items that turn out to be in the range.

rching the tree below for all values, x, such that $25 \le 1$

ple, the h comes from the starred nodes; the M comes ion-dashed nodes. Dashed nodes are never looked at.

entation for d subsets. BST, plus y). SortedSet<String> fauna = new BSTSet<String>(stuff); subset1 = fauna.subSet("bison", "gnu"); subset2 = subset1.subSet("axolot1", "dog"); ypnus sentinel hartebeest

duck

elk

CS61B: Lecture #23 11

ample of Representation: BSTSet

axolotl

bison dog

41:45 2016