Priority Queues, Heaps

"W "w

e: defined by operations “add,” “find largest," "remove
cheduling long streams of actions to occur at various

or sorting (keep removing largest).
ementation is the heap, a kind of tree.

imple: Inserting into a simple heap

Removing Largest from Heap

gest: Move bottommost, rightmost node to top, then
1 as needed (swap offending node with larger child) to

1p property.

—
this same term is used to described the pool of storage) @ @
operator uses. Sorry about that.))
boxes show where heap property violated I FTC"
i
e re-hei:zy up @ Q @
G—
) © @ H ® © @ R
}#1:45 2016 CS61B: Lecture #23 2 41:45 2016 CS61B: Lecture #23 4 41:45 2016 CS61B: Lecture #23 6
CS61B Lecture #23 Heaps Heap insertion continued

es (Data Structures §6.4, §6.5)
s (§6.2)
! SortedSet, Map, etc.

Hashing (Data Structures Chapter 7).

#1:45 2016 CS61B: Lecture #23 1

is a binary free that enforces the

serty: Both labels in both children of each node are
node’s label.

op has largest label.

bihary search property, which allows us to keep free

always valid to put the smallest nodes anywhere at the
le free.

can be made nearly complete: all but possibly the last
many keys as possible.

insertion of new value and deletion of largest value al-
ne proportional to lg N in worst case.

s basically the same, but with the minimum value at the
dren having larger values than their parents.

41:45 2016 CS61B: Lecture #23 3

41:45 2016 CS61B: Lecture #23 5

Ranges

looked for specific items

5, need an ordering anyway, and can also support looking
f values.

rform some action on all values in a BST that are within
in natural order):

[TTODO to all labels in T that are

< U, in ascending natural order. */

isitRange (BST T, Comparable<Key> L, Comparable<Key> U,
Action whatToDo)

11) {

eft = L.compareTo (T.label ()),

ight = U.compareTo (T.label ());

eft < 0) /*L<label */

mge (T.left (), L, U, whatToDo);

left <= 0 && compRight > 0) /* L <= label <U*/

o.action (T);

ight > 0) /* label <U*/

mge (T.right (), L, U, whatToDo);

}#1:45 2016 CS61B: Lecture #23 8

red Sets and Range Queries in Java

Set supports range queries with views of set:
t(U): subset of S that is < U.

t(L): subset that is > L.

(L,U): subset that is > L, < U.

iews modify S.

, e.g., add to a headSet beyond U are disallowed.
*hrough a view to process a range:

String> fauna = new TreeSet<String>

ys.asList ("axolotl", "elk", "dog", "hartebeest", "duck"));
7 item : fauna.subSet ("bison", "gnu"))

cout.printf ("%s, ", item);

dog, duck, elk,”

type TreeSet<T> requires either that T be Comparable,
rovide a Comparator:

5tring> rev_fauna = new TreeSet<String> (Collections.reverseOrder());

41:45 2016 CS61B: Lecture #23 10

Heaps in Arrays

are nearly complete (missing items only at bottom level),
ys for compact representation.

emoval from last slide (dashed arrows show children):
123456780910
20) = [2018]9]8[17]0]-1]1]5]4]
I
2
LU
) © @ [afs3]s]io

I

=

-1

1]5] |

18] 4[]8 ir[o[4[1]5] |
Fed in level order. U -
node at index #K
bK and 2K + 1 [18[17]9]8 4o 1] 1]5]

#1:45 2016 CS61B: Lecture #23 7

Time for Range Queries

ge query € O(h+ M), where h is height of free, and M
data items that turn out to be in the range.

irching the tree below for all values, x, such that 25 <

ple, the h comes from the starred nodes; the M comes
1on-dashed nodes. Dashed nodes are never looked at.

{71

{50} {90}

{45} {55} {80} {100}
41:45 2016 CS61B: Lecture #23 9

ample of Representation: BSTSet

jentation for SortedSet<String>

d subsets. fauna = new BSTSet<String>(stuff)
subsetl = fauna.subSet("bison","gnu");
BST/ plUS subset2 = subsetl.subSet("axolotl","dog");
y).
xpensivel
sentinel

bison

gnu
[A,
[

bison

dog
41:45 2016 €5618: Lecture #2311

	CS61B Lecture #23
	Priority Queues, Heaps
	Heaps
	Example: Inserting into a simple heap
	Heap insertion continued
	Removing Largest from Heap
	Heaps in Arrays
	Ranges
	Time for Range Queries
	Ordered Sets and Range Queries in Java
	Example of Representation: BSTSet

