
CS61B Lecture #23

Today:

• Priority queues (Data Structures §6.4, §6.5)

• Range queries (§6.2)

• Java utilities: SortedSet, Map, etc.

Next topic: Hashing (Data Structures Chapter 7).

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 1

Priority Queues, Heaps

• Priority queue: defined by operations “add,” “find largest,” “remove
largest.”

• Examples: scheduling long streams of actions to occur at various
future times.

• Also useful for sorting (keep removing largest).

• Common implementation is the heap, a kind of tree.

• (Confusingly, this same term is used to described the pool of storage
that the new operator uses. Sorry about that.)

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 2

Heaps

• A max-heap is a binary tree that enforces the

Heap Property: Both labels in both children of each node are
less than node’s label.

• So node at top has largest label.

• Looser than binary search property, which allows us to keep tree
“bushy”.

• That is, it’s always valid to put the smallest nodes anywhere at the
bottom of the tree.

• Thus, heaps can be made nearly complete: all but possibly the last
row have as many keys as possible.

• As a result, insertion of new value and deletion of largest value al-
ways take time proportional to lgN in worst case.

• A min-heap is basically the same, but with the minimum value at the
root and children having larger values than their parents.

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 3

Example: Inserting into a simple heap

Data:

1 17 4 5 9 0 -1 20

20

17

5

1

4

9

0 -1

Initial Heap:

Add 8: Dashed boxes show where heap property violated

20

17

5

1 8

4

9

0 -1

20

17

8

1 5

4

9

0 -1

re-heapify up

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 4

Heap insertion continued

Now insert 18:

20

17

8

1 5

4

18

9

0 -1

20

17

8

1 5

18

4

9

0 -1

20

18

8

1 5

17

4

9

0 -1

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 5

Removing Largest from Heap

To remove largest: Move bottommost, rightmost node to top, then
re-heapify down as needed (swap offending node with larger child) to
re-establish heap property.

20

18

8

1 5

17

4

9

0 -1

4

18

8

1 5

17

9

0 -1

18

4

8

1 5

17

9

0 -1

18

17

8

1 5

4

9

0 -1

↑ Final
Initial ↓

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 6

Heaps in Arrays

• Since heaps are nearly complete (missing items only at bottom level),
can use arrays for compact representation.

• Example of removal from last slide (dashed arrows show children):

20

18

8

1 5

17

4

9

0 -1

=⇒

Nodes stored in level order.
Children of node at index #K

are in 2K and 2K + 1

20 18 9 8 17 0 -1 1 5 4

⇓

4 18 9 8 17 0 -1 1 5

⇓

18 4 9 8 17 0 -1 1 5

⇓

18 17 9 8 4 0 -1 1 5

1 2 3 4 5 6 7 8 9 10

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 7

Ranges

• So far, have looked for specific items

• But for BSTs, need an ordering anyway, and can also support looking
for ranges of values.

• Example: perform some action on all values in a BST that are within
some range (in natural order):

/** Apply WHATTODO to all labels in T that are

* >= L and < U, in ascending natural order. */

static void visitRange (BST T, Comparable<Key> L, Comparable<Key> U,

Action whatToDo)

if (T != null) {

int compLeft = L.compareTo (T.label ()),

compRight = U.compareTo (T.label ());

if (compLeft < 0) /* L < label */
visitRange (T.left (), L, U, whatToDo);

if (compLeft <= 0 && compRight > 0) /* L <= label < U */
whatToDo.action (T);

if (compRight > 0) /* label < U */
visitRange (T.right (), L, U, whatToDo);

}

}

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 8

Time for Range Queries

• Time for range query ∈ O(h+M), where h is height of tree, and M

is number of data items that turn out to be in the range.

• Consider searching the tree below for all values, x, such that 25 ≤
x < 40.

• In this example, the h comes from the starred nodes; the M comes
from other non-dashed nodes. Dashed nodes are never looked at.

42*

21*

10

5 12

30

22* 35

71

50

45 55

90

80 100

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 9

Ordered Sets and Range Queries in Java

• Class SortedSet supports range queries with views of set:

– S.headSet(U): subset of S that is < U.

– S.tailSet(L): subset that is ≥ L.

– S.subSet(L,U): subset that is ≥ L, < U.

• Changes to views modify S.

• Attempts to, e.g., add to a headSet beyond U are disallowed.

• Can iterate through a view to process a range:

SortedSet<String> fauna = new TreeSet<String>

(Arrays.asList ("axolotl", "elk", "dog", "hartebeest", "duck"));

for (String item : fauna.subSet ("bison", "gnu"))

System.out.printf ("%s, ", item);

would print “dog, duck, elk,”

• Java library type TreeSet<T> requires either that T be Comparable,
or that you provide a Comparator:

SortedSet<String> rev fauna = new TreeSet<String> (Collections.reverseOrder());

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 10

Example of Representation: BSTSet

• Same representation for
both sets and subsets.

• Pointer to BST, plus
bounds (if any).

• .size() is expensive!

SortedSet<String>

fauna = new BSTSet<String>(stuff);
subset1 = fauna.subSet("bison","gnu");

subset2 = subset1.subSet("axolotl","dog");

∞

sentinel
hartebeest

dog

axolotl elk

duck

bison
gnu

bison

dog

fauna:

subset1:

subset2:

Last modified: Sat Oct 15 16:41:45 2016 CS61B: Lecture #23 11

	CS61B Lecture #23
	Priority Queues, Heaps
	Heaps
	Example: Inserting into a simple heap
	Heap insertion continued
	Removing Largest from Heap
	Heaps in Arrays
	Ranges
	Time for Range Queries
	Ordered Sets and Range Queries in Java
	Example of Representation: BSTSet

