
CS61B Lecture #25: Java Generics

19:36:29 2017 CS61B: Lecture #25 1

The Old Days

library types such as List didn’t used to be parameterized. All
were lists of Objects.

write things like this:

= 0; i < L.size(); i += 1)

String s = (String) L.get(i); ... }

must explicitly cast result of L.get(i) to let the compiler
it is.

calling L.add(x), was no check that you put only Strings

starting with 1.5, the designers tried to alleviate these per-
problems by introducing parameterized types, like List<String>.

Unfortunately, it is not as simple as one might think.

19:36:29 2017 CS61B: Lecture #25 2

Basic Parameterization

definitions of ArrayList and Map in java.util:

class ArrayList<Item> implements List<Item> {

Item get(int i) { ... }

boolean add(Item x) { ... }

interface Map<Key, Value> {

get(Key x);

(blue) occurrences of Item, Key, and Value introduce formal
parameters, whose “values” (which are reference types) get

substituted for all the other occurrences of Item, Key, or Value

ArrayList or Map is “called” (as in ArrayList<String>, or
ArrayList<int[]>, or Map<String, List<Particle>>).

occurrences of Item, Key, and Value are uses of the formal
like uses of a formal parameter in the body of a function.

19:36:29 2017 CS61B: Lecture #25 3

Type Instantiation

Instantiating a generic type is analogous to calling a function.

again

class ArrayList<Item> implements List<Item> {
public Item get(int i) { ... }
public boolean add(Item x) { ... }

write ArrayList<String>, we get, in effect, a new type,
like

String ArrayList implements String List {
public String get(int i) { ... }
public boolean add(String x) { ... }

suggested, List<String> refers to a new interface type as

19:36:29 2017 CS61B: Lecture #25 4

Parameters on Methods

(methods) may also be parameterized by type. Example of
java.util.Collections:

read-only list containing just ITEM. */

List<T> singleton(T item) { ... }

unmodifiable empty list. */

List<T> emptyList() { ... }

compiler figures out T in the expression singleton(x) by look-
type of x. This is a simple example of type inference.

List<String> empty = Collections.emptyList();

parameters obviously don’t suffice, but the compiler deduces
parameter T from context: it must be assignable to List<T>.

19:36:29 2017 CS61B: Lecture #25 5

Wildcards

the definition of something that counts the number of
something occurs in a collection of items. Could write this

of items in C that are equal to X. */

int frequency(Collection<T> c, Object x) {

n = 0;

y : c) {

(x.equals(y))

n += 1;

n;

don’t really care what T is; we don’t need to declare anything
in the body, because we could write instead

Object y : c) {

type parameters say that you don’t care what a type pa-
(i.e., it’s any subtype of Object):

frequency(Collection<?> c, Object x) {...}

19:36:29 2017 CS61B: Lecture #25 6



Subtyping (I)

the relationships between the types

List<String>, List<Object>, ArrayList<String>, ArrayList<Object>?

that ArrayList � List and String � Object (using �
subtype of”). . .

List<String> � List<Object>?

19:36:29 2017 CS61B: Lecture #25 7

Subtyping (II)

this fragment:

List<String> LS = new ArrayList<String>();

List<Object> LObj = LS; // OK??

= { 1, 2 };
LObj.add(A); // Legal, since A is an Object

= LS.get(0); // OOPS! A.get(0) is NOT a String,

// but spec of List<String>.get

// says that it is.

List<String> � List<Object>would violate type safety:
compiler is wrong about the type of a value.

general for T1<X> � T2<Y>, must have X = Y.

about T1 and T2?

19:36:29 2017 CS61B: Lecture #25 8

Subtyping (III)

consider

ArrayList<String> ALS = new ArrayList<String>();

List<String> LS = ALS; // OK??

case, everything’s fine:

object’s dynamic type is ArrayList<String>.

Therefore, the methods expected for LS must be a subset of
for ALS.

since the type parameters are the same, the signatures of
methods will be the same.

Therefore, all the legal calls on methods of LS (according to the
compiler) will be valid for the actual object pointed to by LS.

general, T1<X> � T2<X> if T1 � T2.

19:36:29 2017 CS61B: Lecture #25 9

A Java Inconsistency: Arrays

language design is not entirely consistent when it comes to

same reason that ArrayList<String> 6� ArrayList<Object>,
expect that String[] 6� Object[].

Java does make String[] � Object[].

as explained above, one gets into trouble with

AS = new String[3];

AObj = AS;

new int[] { 1, 2 }; // Bad

Java, the Bad line causes an ArrayStoreException.

this way? Basically, because otherwise there’d be no way
implement, e.g., ArrayList.

19:36:29 2017 CS61B: Lecture #25 10

Type Bounds (I)

Sometimes, your program needs to ensure that a particular type pa-
replaced only by a subtype (or supertype) of a particular
of like specifying the “type of a type.”).

example,

NumericSet<T extends Number> extends HashSet<T> {

minimal element */

() { ... }

that all type parameters to NumbericSet must be subtypes
(the “type bound”). T can either extend or implement the
appropriate.

19:36:29 2017 CS61B: Lecture #25 11

Type Bounds (II)

example:

all elements of L to X. */

void fill(List<? super T> L, T x) { ... }

that L can be a List<Q> for any Q as long as T is a subtype of
or implements) Q.

the library designers just define this as

all elements of L to X. */

void fill(List<T> L, T x) { ... }

19:36:29 2017 CS61B: Lecture #25 12



Type Bounds (III)

more:

sorted list L for KEY, returning either its position (if

present), or k-1, where k is where KEY should be inserted. */

int binarySearch(List<? extends Comparable<? super T>> L,

T key)

items of L have to have a type that is comparable to T’s
supertype of T.

have to be able to contain the value key?

this make sense?

19:36:29 2017 CS61B: Lecture #25 13

Dirty Secrets Behind the Scenes

design for parameterized types was constrained by a desire
backward compatibility.

when you write

T> {

Foo<Integer> q = new Foo<Integer>();

mogrify(T y) { ... } Integer r = q.mogrify(s);

gives you
{

x; Foo q = new Foo();

mogrify(Object y) { ... } Integer r =

(Integer) q.mogrify((Integer) s);

supplies the casts automatically, and also throws in some
checks. If it can’t guarantee that all those casts will work,
warning about “unsafe” constructs.

19:36:29 2017 CS61B: Lecture #25 14

Limitations

Java’s design choices, are some limitations to generic pro-

kinds of Foo or List are really the same,

instanceof List<String>will be true when L is a List<Integer>.

e.g., class Foo, you cannot write new T(), new T[], or x

instanceof T.

types are not allowed as type parameters.

have ArrayList<int>, just ArrayList<Integer>.

Fortunately, automatic boxing and unboxing makes this substitu-
easy:

(ArrayList<Integer> L) {

N; N = 0;

(int x : L) { N += x; }

return N;

Unfortunately, boxing/unboxing have significant costs.

19:36:29 2017 CS61B: Lecture #25 15


	CS61B Lecture #25: Java Generics
	The Old Days
	Basic Parameterization
	Type Instantiation
	Parameters on Methods
	Wildcards
	Subtyping (I)
	Subtyping (II)
	Subtyping (III)
	A Java Inconsistency: Arrays
	Type Bounds (I)
	Type Bounds (II)
	Type Bounds (III)
	Dirty Secrets Behind the Scenes
	Limitations

