
CS61B Lectures #27

sorts, heap sort

sorts

Today: DS(IJ), Chapter 8; Next topic: Chapter 9.
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Sorting by Selection: Heapsort

selecting smallest (or largest) element.

idea on a simple list or vector.

already seen it in action: use heap.

lgN) algorithm (N remove-first operations).

remove items from end of heap, we can use that area to
result:

19 0 -1 7 23 2 42original:

42 23 19 7 0 2 -1heapified:

23 7 19 -1 0 2 42

19 7 2 -1 0 23 42

7 0 2 -1 19 23 42

2 0 -1 7 19 23 42

0 -1 2 7 19 23 42

-1 0 2 7 19 23 42

-1 0 2 7 19 23 42

Heap part

Sorted part
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Sorting By Selection: Initial Heapifying

covering heaps before, we created them by insertion in an
empty heap.

given an array of unheaped data to start with, there is a
procedure:

heapify(int[] arr) {
N = arr.length;

(int k = N / 2; k > 0; k -= 1) {
while (2*k <= N) {

int c = 2k or 2k+1, whichever is <= N
and indexes larger value in arr;

swap elements c-1 and k-1 of arr;
}

the procedure for re-inserting an element after the top
the heap is removed, repeated N/2 times.

instead of being Θ(N lgN), it’s just Θ(N).
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Cost of Creating Heap
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1 node × 3 steps down

2 nodes × 2 steps down

4 nodes × 1 step down

general, worst-case cost for a heap with h + 1 levels is

· h + 21 · (h− 1) + . . . + 2h−1 · 1

+ 21 + . . . + 2h−1) + (20 + 21 + . . . + 2h−2) + . . . + (20)

− 1) + (2h−1 − 1) + . . . + (21 − 1)
+1 − 1− h

Θ(2h) = Θ(N)

the rest of heapsort still takes Θ(N lgN), this does not
its asymptotic cost.
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Merge Sorting

data in 2 equal parts; recursively sort halves; merge re-

seen analysis: Θ(N lgN).

external sorting:

break data into small enough chunks to fit in memory and

repeatedly merge into bigger and bigger sequences.

K sequences of arbitrary size on secondary storage using
storage:

= new Data[K];

i, set V[i] to the first data item of sequence i;

there is data left to sort:

k so that V[k] is smallest;

Output V[k], and read new value into V[k] (if present).
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Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate:

3, 0, 6, 10, -1, 2, 20, 8)

00:
01:
02:
03:

0 elements processed

(9)

processed

00:
1 •1: (9, 15)
02:
03:

2 elements processed

1 •0: (5)
1 •1: (9, 15)
02:
03:

3 elements processed

(3, 5, 9, 15)

processed

00:
1 •1: (0, 6)
1 •2: (3, 5, 9, 15)
03:

6 elements processed

1 •0: (8)
1 •1: (2, 20)
02:
1 •3: (-1, 0, 3, 5, 6, 9, 10, 15)

11 elements processed
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Quicksort: Speed through Probability

data into pieces: everything > a pivot value at the high
sequence to be sorted, and everything ≤ on the low end.

recursively on the high and low pieces.

stop when pieces are “small enough” and do insertion sort
whole thing.

insertion sort has low constant factors. By design, no item
out of its will move out of its piece [why?], so when pieces
#inversions is, too.

choose pivot well. E.g.: median of first, last and middle
sequence.
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Example of Quicksort

example, we continue until pieces are size ≤ 4.

next step are starred. Arrange to move pivot to dividing
time.

is insertion sort.

18 -4 -7 12 -5 19 15 0 22 29 34 -1*

-1 18 13 12 10 19 15 0 22 29 34 16*

-1 15 13 12* 10 0 16 19* 22 29 34 18

-1 10 0 12 15 13 16 18 19 29 34 22

everything is “close to” right, so just do insertion sort:

-1 0 10 12 13 15 16 18 19 22 29 34
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Performance of Quicksort

Probabalistic time:

choice of pivots good, divide data in two each time: Θ(N lgN)
good constant factor relative to merge or heap sort.

choice of pivots bad, most items on one side each time: Θ(N 2).

) in best case, so insertion sort better for nearly or-
input sets.

Interesting point: randomly shuffling the data before sorting makes
very unlikely!
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Quick Selection

Problem: for given k, find kth smallest element in data.

method: sort, select element #k, time Θ(N lgN).

some constant, can easily do in Θ(N) time:

through array, keep smallest k items.

probably Θ(N) time for all k by adapting quicksort:

Partition around some pivot, p, as in quicksort, arrange that pivot
at dividing line.

that in the result, pivot is at index m, all elements ≤
have indicies ≤ m.

k, you’re done: p is answer.

k, recursively select kth from left half of sequence.

k, recursively select (k − m − 1)th from right half of
sequence.
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Selection Example

Find just item #10 in the sorted version of array:

contents:
-4 37 4 49 10 40* 59 0 13 2 39 11 46 31

#10 to left of pivot 40:

-4 37 4* 11 10 39 2 0 40 59 51 49 46 60

#6 to right of pivot 4:

4 37 13 11 10 39 21 31* 40 59 51 49 46 60
4

#1 to right of pivot 31:

4 21 13 11 10 31 39 37 40 59 51 49 46 60
9

elements; just sort and return #1:

4 21 13 11 10 31 37 39 40 59 51 49 46 60
9
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Selection Performance

algorithm, if m roughly in middle each time, cost is

C(N) =















1, if N = 1,
N + C(N/2), otherwise.

= N +N/2 + . . . + 1

= 2N − 1 ∈ Θ(N)

worst case, get Θ(N 2), as for quicksort.

another, non-obvious algorithm, can get Θ(N) worst-case time
(take CS170).
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