Balanced Search: The Problem

rch trees important?

deletion fast (on every operation, unlike hash table, to expand from time to time).

ange queries, sorting (unlike hash tables)

CS61B Lecture #29

rch structures (DS(IJ), Chapter 9

bm Numbers (DS(IJ), Chapter 11)

erformance from binary search tree requires remaining led \approx by some some constant >1 at each node.

ds, that tree be "bushy"

es (most inner nodes with one child) perform like linked

t heights of any two subtrees of a node always differ han constant factor K.

05:42	2017	

CS61B: Lecture #29 2

mple Order 4 B-tree ((2,4) Tree)

s show path when finding 40.

er side of each child pointer in path bracket 40. as at least 2 children, and all leaves (little circles) are m, so height must be $O(\lg N)$.

3-tree, order typically much bigger

:05:42 2017

:05:42 2017

le to size of disk sector, page, or other convenient unit

mple of Direct Approach: B-Trees				
grows/shrinks only at root, then two sides always hav	ve			
tree is an M -ary search tree, $M>2$.				
xcept root, has from $\lceil M/2 \rceil$ to M children, and one keach two children.	гу			
m 2 to M children (in non-empty tree).				
bottom of tree are all empty (don't really exist) ar rom root.	۱d			
h-tree property:				
sorted in each node.				
subtrees to left of a key, K , are $< K$, and all to right	ht			
simple generalization of binary search.				
dd just above bottom; split overfull nodes as neede ey up to parent.	d,			

(too big) 15 35 45 (too big) 20 25 27* 30 40 50 (too big) 15 25* 35 45 (too big) 15 25* 35 45 (too big) 20 27 30 40 50 (too big) 27 30 40 (too big) 27 30 (too big

Inserting in B-Tree (Splitting)

nserting in B-tree (Simple Case)

:05:42 2017

:05:42 2017

CS61B: Lecture #29 3

CS61B: Lecture #29 4

CS61B: Lecture #29 6

Red-Black Trees

ee is a binary search tree with additional constraints w unbalanced it can be.

ing is always $O(\lg N)$.

a's TreeSet and TreeMap types.

are inserted or deleted, tree is rotated and recolored restore balance.

is (conceptually) colored red or black.

hck.

node contains no data (as for B-trees) and is black. has same number of black ancestors.

ernal node has two children.

node has two black children.

5, and 6 guarantee $O(\lg N)$ searches.

05:42 2017

CS61B: Lecture #29 8

Left-Leaning Red-Black Trees

(2,4) or (2,3) tree with three children may be repreb different ways in a red-black tree:

5 10

iderably simplify insertion and deletion in a red-black ys choosing the option on the left.

s a one-to-one relationship between (2,4) trees and red-

g trees are called left-leaning red-black trees.

r simplification, let's restrict ourselves to red-black orrespond to (2,3) trees (whose nodes have no more en), so that no red-black node has two red children. :05:42 2017 CS61B: Lecture #29 10

Rotations and Recolorings

pses, we'll augment the general rotation algorithms with ing.

color from the original root to the new root, and color root red. Examples:

hese changes the number of black nodes along any path root and the leaves.

:05:42 2017

CS61B: Lecture #29 12

Deleting Keys from B-tree

rom last tree.

Sample Red-Black Tree

ack tree corresponds to a (2,4) tree, and the operations spond to those on the other.

f (2,4) tree corresponds to a cluster of 1-3 red-black ch the top node is black and any others are red.

ed-Black Insertion and Rotations

tom just as for binary tree (color red except when tree ty).

(and recolor) to restore red-black property, and thus

trees preserves binary tree property, but changes bal-

CS61B: Lecture #29 9

:05:42 2017

<pre>The Algorithm (Sedgewick) Dinary-tree type RBTree: basically ordinary BST nodes the same as for ordinary BSTs, but we add some fixups he red-black properties. rt(RBTree tree, KeyType key) {</pre>	E B E tree.ri	ft().isRed() && ght().isRed()) orFlip(tree); the empty er the rest	Example (II) ding to the tree on the left. This is $\frac{30}{6} + \frac{30}{6} + \frac{10}{6} + $
:05:42 2017 C5618: Lecture #29 14	105:42 2017 C561	3: Lecture #29 16 :05:42 2017	C5618: Lecture #29 18
Splitting by Recoloring ns will temporarily create nodes with too many children, t them up. oloring allows us to split nodes. We'll call it colorFlip: 10 5 10 5 15 10 5 15	tree.rot A C } tree.rot tree.rot tree.rot tree.rot tree.rot tree.rot f tree.rot tree.rot f tree.rot f tree.rot tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.rot f tree.lot tree.let tree.let	pred-black correspond node:).isRed() t().isBlack()) { ateLeft(); pred. This	2-3 Red-Black Insertion No fixups needed. $ \frac{30}{50} + \frac{30}{60} + \frac{50}{90} + \frac{90}{60} + \frac{90}{6$
05:42 2017 C5618: Lecture #29 13	:05:42 2017 C561	3: Lecture #29 15 :05:42 2017	CS61B: Lecture #29 17

