Balanced Search: The Problem

rch trees important?
/deletion fast (on every operation, unlike hash table, to expand from time to time).
ange queries, sorting (unlike hash tables)
serformance from binary search tree requires remaining led \approx by some some constant >1 at each node.
ds, that tree be "bushy"
ees (most inner nodes with one child) perform like linked
It heights of any two subtrees of a node always differ han constant factor K.
:05:42 2017
C5618: Lecture \#29 2

CS61B Lecture \#29

rch structures (DS(IJ), Chapter 9
om Numbers (DS(IJ), Chapter 11)

mple Order 4 B-tree $((2,4)$ Tree)

s show path when finding 40 .
er side of each child pointer in path bracket 40
as at least 2 children, and all leaves (little circles) are m , so height must be $O(\lg N)$.
3 -tree, order typically much bigger
le to size of disk sector, page, or other convenient unit
:05:42 2017
C561B: Lecture \#29 4

mple of Direct Approach: B-Trees

grows/shrinks only at root, then two sides always have
tree is an M-ary search tree, $M>2$.
xcept root, has from $\lceil M / 2\rceil$ to M children, and one key ach two children.
m 2 to M children (in non-empty tree).
bottom of tree are all empty (don't really exist) and rom root.
h-tree property:
sorted in each node.
i subtrees to left of a key, K, are $<K$, and all to right
simple generalization of binary search.
dd just above bottom; split overfull nodes as needed, ey up to parent.

Inserting in B-Tree (Splitting)

:05:42 2017
C561B: Lecture \#29 6

nserting in B-tree (Simple Case)

Red-Black Trees

ee is a binary search tree with additional constraints w unbalanced it can be.
ing is always $O(\lg N)$.
va's TreeSet and TreeMap types
are inserted or deleted, tree is rotated and recolored restore balance
: is (conceptually) colored red or black.
ack.
F node contains no data (as for B-trees) and is black.
F has same number of black ancestors.
ernal node has two children.
node has two black children.
5 , and 6 guarantee $O(\lg N)$ searches.
:05:42 2017
C561B: Lecture \#29 8

Deleting Keys from B-tree

rom last tree.

:05:42 2017

Left-Leaning Red-Black Trees

$(2,4)$ or $(2,3)$ tree with three children may be repre0 different ways in a red-black tree:

;iderably simplify insertion and deletion in a red-black ys choosing the option on the left
s a one-to-one relationship between $(2,4)$ trees and red-
g trees are called left-leaning red-black trees.
r simplification, let's restrict ourselves to red-black :orrespond to $(2,3)$ trees (whose nodes have no mor 'en), so that no red-black node has two red children
:05:42 2017 C5618: Lecture \#29 10

Sample Red-Black Tree

ack tree corresponds to a $(2,4)$ tree, and the operations spond to those on the other.
$f(2,4)$ tree corresponds to a cluster of 1-3 red-black ch the top node is black and any others are red

:05:42 2017

Rotations and Recolorings

oses, we'll augment the general rotation algorithms with 'ing.
color from the original root to the new root, and color oot red. Examples:

hese changes the number of black nodes along any path root and the leaves.

05:42 2017
C561B: Lecture \#29 12

ed-Black Insertion and Rotations

Htom just as for binary tree (color red except when tree y).
(and recolor) to restore red-black property, and thus
trees preserves binary tree property, but changes bal-

The Algorithm (Sedgewick)

pinary-tree type RBTree: basically ordinary BST nodes
the same as for ordinary BSTs, but we add some fixups he red-black properties.
t(RBTree tree, KeyType key) \{
s == null)
arn new RBTree (key, null, null, RED);
= key.compareTo(tree.label());
(cmp < 0) tree.setLeft(insert(tree.left(), key)); tree.setRight(insert(tree.right(), key));

Eixup(tree); // Only line that's all new!

5:42 2017
CS61B: Lecture \#29 14

Splitting by Recoloring

ms will temporarily create nodes with too many children, t them up.
oloring allows us to split nodes. We'll call it colorFlip:

joins the parent node, splitting the original.

Fixing Up the Tree (II)

ak up 4-nodes into 3-nodes or 2-nodes.

a result of other fixups, or of insertion into the empty t may end up red, so color the root black after the rest and fixups are finished. (Not part of the fixup function; the end).
:05:42 2017
CS618: Lecture \#29 16

Fixing Up the Tree

back up the BST, we restore the left-leaning red-black and limit ourselves to red-black trees that correspond s by applying the following (in order) to each node: ert right-leaning trees to left-leaning:

node B will be red, so that both B and D end up red. This
ate linked red nodes into a normal 4-node (temporarily)

Insertion Example (II)

1. let's insert 6, leading to the tree on the left. This is , so apply Fixup 1:

05:42 2017
CS6618: Lecture \#29 18

Jf Left-Leaning 2-3 Red-Black Insertion

, initial tree on left. No fixups needed.

Insertion Example (IIIa)

xup 2

C561B: Lecture \#29 20

Insertion Example (III)

r inserting 85. We need fixup 1 first.

0.42

Insertion Example (IIIc)

another 4-node, so apply fixup 3 again.

Insertion Example (IIIb)

a 4-node, so apply fixup 3.

Insertion Example (IIId)

a right-leaning tree, so apply fixup 1
30
 T a
$1201_{1}^{40} ?_{1}^{80} ? 9$

