
Public-Service Announcement

Consulting Group is a student-run consulting organiza-
provides strategy consulting services to our clients.
cutting edge challenges faced exclusively by industry-

technology companies in the Silicon Valley. In addition
consulting, all of our members go through thoroughly exten-
professional development and training programs to become

the professional world. . . . Join our tight-knit fam-
transform your undergraduate experience through life-

friendships, networking opportunities, personal mentorships,
resources, and more. No prior business or engineering
is required.

information, please visit our website at vcg.berkeley.edu
our table on Sproul! Thank you!”

10:19:17 2017 CS61B: Lecture #3 1

CS61B Lecture #3

are forgiving during the first week or so, but try to get
submitted by Tuesday night. DBC: Let us know if you can’t

something to work!

particular, there are about 50 people who have accounts but do
Git repositories. You cannot hand anything in without the
do get this part of the lab done!

on the waiting list, you will not be admitted until you
open lab (or a space opens up in the one you are waiting on).
yourself from the one you are waiting on and enroll for an
or risk not getting in.

also not be able to enroll until you resolve conflicts with
courses. We do not encourage signing up for classes with

lectures, although there is a way to seek an exception.
have a final conflict if you have a lecture conflict; we do

guarantee that we will have an alternative final at a time you can

10:19:17 2017 CS61B: Lecture #3 2

More Iteration: Sort an Array

Print out the command-line arguments in lexicographic or-

the quick brown fox jumped over the lazy dog

fox jumped lazy over quick the the

Sort {

print WORDS lexicographically. */

void main(String[] words) {

0, words.length-1);

print(words);

A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) { /* "TOMORROW" */ }

one line, separated by blanks. */

print(String[] A) { /* "TOMORROW" */ }

10:19:17 2017 CS61B: Lecture #3 3

How do We Know If It Works?

testing refers to the testing of individual units (methods, classes)
program, rather than the whole program.

class, we mainly use the JUnit tool for unit testing.

AGTestYear.java in lab #1.

Integration testing refers to the testing of entire (integrated) set
modules—the whole program.

course, we’ll look at various ways to run the program against
inputs and checking the output.

testing refers to testing with the specific goal of check-
fixes, enhancements, or other changes have not introduced

(regressions).

10:19:17 2017 CS61B: Lecture #3 4

Test-Driven Development

write tests first.

unit at a time, run tests, fix and refactor until it works.

really going to push it in this course, but it is useful and
following.

10:19:17 2017 CS61B: Lecture #3 5

Testing sort

pretty easy: just give a bunch of arrays to sort and then
they each get sorted properly.

make sure we cover the necessary cases:

cases. E.g., empty array, one-element, all elements the

Representative “middle” cases. E.g., elements reversed, elements
order, one pair of elements reversed,

10:19:17 2017 CS61B: Lecture #3 6

Simple JUnit

package provides some handy tools for unit testing.

annotation @Test on a method tells the JUnit machinery
that method.

annotation in Java provides information about a method, class,
can be examined within Java itself.)

collection of methods with names beginning with assert then allow
cases to check conditions and report failures.

example.]

10:19:17 2017 CS61B: Lecture #3 7

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

/*(Index s.t. A[k] is largest in A[L],...,A[U])*/;

A[k] with A[U] }*/;
items L to U-1 of A. }*/;

done! Well, OK, not quite.

10:19:17 2017 CS61B: Lecture #3 8

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

indexOfLargest(A, L, U);

A[k] with A[U] }*/;
items L to U-1 of A. }*/;

10:19:17 2017 CS61B: Lecture #3 9

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

indexOfLargest(A, L, U);

A[k] with A[U] }*/;
L, U-1); // Sort items L to U-1 of A

10:19:17 2017 CS61B: Lecture #3 10

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

indexOfLargest(A, L, U);

tmp = A[k]; A[k] = A[U]; A[U] = tmp;

L, U-1); // Sort items L to U-1 of A

10:19:17 2017 CS61B: Lecture #3 11

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

indexOfLargest(A, L, U);

tmp = A[k]; A[k] = A[U]; A[U] = tmp;

L, U-1); // Sort items L to U-1 of A

an iterative version look like?

{

10:19:17 2017 CS61B: Lecture #3 12

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

indexOfLargest(A, L, U);

tmp = A[k]; A[k] = A[U]; A[U] = tmp;

L, U-1); // Sort items L to U-1 of A

version:

U) {
indexOfLargest(A, L, U);

tmp = A[k]; A[k] = A[U]; A[U] = tmp;

10:19:17 2017 CS61B: Lecture #3 13

Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {

i1;

10:19:17 2017 CS61B: Lecture #3 14

Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

i1;

(i0 < i1) */ {

10:19:17 2017 CS61B: Lecture #3 15

Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

i1;

(i0 < i1) */ {
/*(index of largest value in V[i0 + 1..i1])*/;

/*(whichever of i0 and k has larger value)*/;

10:19:17 2017 CS61B: Lecture #3 16

Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

i1;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

/*(whichever of i0 and k has larger value)*/;

10:19:17 2017 CS61B: Lecture #3 17

Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

i1;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

(V[i0].compareTo(V[k]) > 0) ? i0 : k;

(V[i0].compareTo(V[k]) > 0) return i0; else return k;

this into an iterative version is tricky: not tail recursive.

the arguments to compareTo the first time it’s called?

10:19:17 2017 CS61B: Lecture #3 18

Iteratively Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

(V[i0].compareTo(V[k]) > 0) ? i0 : k ;

(V[i0].compareTo(V[k]) > 0) return i0; else return k;

// Deepest iteration

...?; i ...?)

10:19:17 2017 CS61B: Lecture #3 19

Iteratively Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

(V[i0].compareTo(V[k]) > 0) ? i0 : k ;

(V[i0].compareTo(V[k]) > 0) return i0; else return k;

// Deepest iteration

...?; i ...?)

10:19:17 2017 CS61B: Lecture #3 20

Iteratively Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

(V[i0].compareTo(V[k]) > 0) ? i0 : k ;

(V[i0].compareTo(V[k]) > 0) return i0; else return k;

// Deepest iteration

- 1; i >= i0; i -= 1)

10:19:17 2017 CS61B: Lecture #3 21

Iteratively Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

(V[i0].compareTo(V[k]) > 0) ? i0 : k ;

(V[i0].compareTo(V[k]) > 0) return i0; else return k;

// Deepest iteration

- 1; i >= i0; i -= 1)

(V[i].compareTo(V[k]) > 0) ? i : k ;

10:19:17 2017 CS61B: Lecture #3 22

Finally, Printing

on one line, separated by blanks. */

print(String[] A) {
= 0; i < A.length; i += 1)

System.out.print(A[i] + " ");

System.out.println();

introduced a new syntax for the for loop here: */

s : A)

System.out.print(s + " ");

you like, but let’s not stress over it yet! */

10:19:17 2017 CS61B: Lecture #3 23

Another Problem

array of integers, A, of length N , find the smallest index, k,
elements at indices ≥ k and < N are greater than A[N].
elements k to N − 1 right by one. For example, if A starts

3, 0, 12, 11, 9, 15, 22, 12 }

up as

3, 0, 12, 11, 9, 12, 15, 22 }

example,

3, 0, 12, 11, 9, 15, 22, -2 }

9, 4, 3, 0, 12, 11, 9, 15, 22 }

10:19:17 2017 CS61B: Lecture #3 24

Your turn

Shove {

Rotate elements A[k] to A[A.length-1] one element to the

right, where k is the smallest index such that elements

through A.length-2 are all larger than A[A.length-1].

void moveOver(int[] A) {
FILL IN

10:19:17 2017 CS61B: Lecture #3 25

	Public-Service Announcement
	CS61B Lecture #3
	More Iteration: Sort an Array
	How do We Know If It Works?
	Test-Driven Development
	Testing sort
	Simple JUnit
	Selection Sort
	Find Largest
	Iteratively Find Largest
	Finally, Printing
	Another Problem
	Your turn

