
CS61B Lecture #30

balanced search structures (DS(IJ), Chapter 9

Pseudo-random Numbers (DS(IJ), Chapter 11)

16:13:46 2016 CS61B: Lecture #30 1

Really Efficient Use of Keys: the Trie

silent about cost of comparisons.

strings, worst case is length of string.

should throw extra factor of key length, L, into costs:

comparisons really means Θ(ML) operations.

look for key X , keep looking at same chars of X M times.

better? Can we get search cost to be O(L)?

a multi-way decision tree, with one decision per character

16:13:46 2016 CS61B: Lecture #30 2

The Trie: Example

keys

abase, abash, abate, abbas, axolotl, axe, fabric, facet}

lines show paths followed for “abash” and “fabric”

internal node corresponds to a possible prefix.

Characters in path to node = that prefix.

a

a
✷

b

ab
a

aba
s

abas
h

abash✷

t

abate✷

b

abbas✷

x

ax
e

axe✷

o

axolotl✷

f

f

a

fa
b

fabric✷

c

facet✷

16:13:46 2016 CS61B: Lecture #30 3

Adding Item to a Trie

adding bat and faceplate.

ticked.

a

a
✷

b

ab
a

aba
s

abas
h

abash✷

t

abate✷

b

abbas✷

x

ax
e

axe✷

o

axolotl✷

b

bat✷

f

f

a

fa
b

fabric✷

c

fac

e

face
p

faceplate✷

t

facet✷

16:13:46 2016 CS61B: Lecture #30 4

A Side-Trip: Scrunching

speed, obvious implementation for internal nodes is array in-
character.

performance, L length of search key.

if independent of N , number of keys. Is there a depen-

arrays are sparsely populated by non-null values—waste of

the arrays on top of each other!

(0, empty) entries of one array to hold non-null elements of

markers to tell which entries belong to which array.

16:13:46 2016 CS61B: Lecture #30 5

Scrunching Example

example: (unrelated to Tries on preceding slides)

arrays, each indexed 0..9

trout pike

A2:

ghee milk oil

cumin mace

3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

3 4 5 6 7 8 9

overlay them, but keep track of original index of each item:

A123:

bass

salt
ghee

trout

cumin

pike
milk oil

mace

0 -1 1 -1 2 5 5 7 6 7 9
A1: 0* 1 2 3 4 5* 6 7* 8 9

A2: 0 1 2* 3 4 5 6* 7* 8 9
A3: 0 1* 2 3 4 5* 6 7 8 9*

16:13:46 2016 CS61B: Lecture #30 6



Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 7

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 8

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 9

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 10

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 11

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 12



Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 13

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 14

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 15

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 16

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

often thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

search, start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
gray nodes are overshoots.

the nodes were chosen randomly so that there are about
many nodes that are > k high as there are that are k high.

searches fast with high probability.

16:13:46 2016 CS61B: Lecture #30 17

Example: Adding and deleting

from initial list:

25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

order, we add 126 and 127 (choosing random heights for
remove 20 and 40:

30 50 55 60 90 95 100 115 120 125 126 127 130 140 150 ∞

nodes here have been modified.

16:13:46 2016 CS61B: Lecture #30 18



Summary

search trees allows us to realize Θ(lgN) performance.

red-black trees:

Θ(lgN) performance for searches, insertions, deletions.

good for external storage. Large nodes minimize # of
operations

B) performance for searches, insertions, and deletions,
is length of key being processed.

hard to manage space efficiently.

Interesting idea: scrunched arrays share space.

probable Θ(lgN) performace for searches, insertions, dele-

implement.

Presented for interesting ideas: probabilistic balance, random-
data structures.

16:13:46 2016 CS61B: Lecture #30 19

Summary of Collection Abstractions

Multiset
contains, iterator

List
get(n)

Set

Ordered Set
first

Unordered
Set

Priority Queue Sorted Set
subset

Map
contains, iterator

get

Unordered
Map

Ordered
Map

Blue: Java has corresponding interface
Green: Java has no corresponding interface

16:13:46 2016 CS61B: Lecture #30 20

Structures that Implement Abstractions

arrays, linked lists, circular buffers

OrderedSet

Priority Queue: heaps

Sorted Set: binary search trees, red-black trees, B-trees,
sorted arrays or linked lists

Unordered Set: hash table

Map: hash table

Map: red-black trees, B-trees, sorted arrays or linked lists

16:13:46 2016 CS61B: Lecture #30 21

Corresponding Classes in Java

(Collection)

ArrayList, LinkedList, Stack, ArrayBlockingQueue,
ArrayDeque

OrderedSet

Priority Queue: PriorityQueue

Sorted Set (SortedSet): TreeSet

Unordered Set: HashSet

Map: HashMap

Map (SortedMap): TreeMap

16:13:46 2016 CS61B: Lecture #30 22


	CS61B Lecture #30
	Really Efficient Use of Keys: the Trie
	The Trie: Example
	Adding Item to a Trie
	A Side-Trip: Scrunching
	Scrunching Example
	Probabilistic Balancing: Skip Lists
	Example: Adding and deleting
	Summary
	Summary of Collection Abstractions
	Data Structures that Implement Abstractions
	Corresponding Classes in Java

