Why Random Sequences?

```
stical samples
ithms
y:
random keys
g streams of random bits (e.g., SSL xor's your data with
atable, pseudo-random bit stream that only you and the
can generate).
se, games
12:44 2017

\section*{CS61B Lecture \#32}
om Numbers (Chapter 11)
e random sequences?
andom sequences"?
om sequences.
ne.
a library classes and methods.
nutations.

\section*{Pseudo-Random Sequences}
able, a "truly" random sequence is difficult for a comman) to produce.
poses, need only a sequence that satisfies certain staerties, even if deterministic.
e.g., cryptography) need sequence that is hard or impredict.
om sequence: deterministic sequence that passes some statistical tests.
, look at lengths of runs: increasing or decreasing conequences.
ly, statistical criteria to be used are quite involved. For <nuth.

12:44 2017
C561B: Lecture \#32 4

\section*{What Is a "Random Sequence"?}
"a sequence where all numbers occur with equal fre-
\(3,4, \ldots\) ?
ow about: "an unpredictable sequence where all numbers qual frequency?"
\(0,1,1,2,2,2,2,2,3,4,4,0,1,1,1, \ldots\) ?
it is wrong with \(0,0,0,0, \ldots\) anyway? Can't that occur election?

\section*{What Can Go Wrong (I)?}

Is, many impossible values: E.g., \(a, c, m\) even.
erns. E.g., just using lower 3 bits of \(X_{i}\) in Java's 48-bit o get integers in range 0 to 7 . By properties of modular
\(\bmod 8=\left(25214903917 X_{i-1}+11 \bmod 2^{48}\right) \bmod 8\)
\[
=\left(5\left(X_{i-1} \bmod 8\right)+3\right) \bmod 8
\]
period of 8 on this generator; sequences like
\[
0,1,3,7,1,2,7,1,4, \ldots
\]
le. This is why Java doesn't give you the raw 48 bits.
: 442017
C561B: Lecture \#32 6

\section*{lerating Pseudo-Random Sequences}
as you might think.
mplex jumbling methods can give rise to bad sequences. uential method is a simple method used by Java:
\[
\begin{aligned}
X_{0} & =\text { arbitrary seed } \\
X_{i} & =\left(a X_{i-1}+c\right) \bmod m, \quad i>0
\end{aligned}
\]
large power of 2 .
sults, want \(a \equiv 5 \bmod 8\), and \(a, c, m\) with no common
:nerator with a period of \(m\) (length of sequence before and reasonable potency (measures certain dependencies ent \(X_{i}\).)
ts of \(a\) to "have no obvious pattern" and pass certain (see Knuth).
\(=25214903917, c=11, m=2^{48}\), to compute 48-bit om numbers. It's good enough for many purposes, but aphically secure.
12:442017
C5618: Lecture \#32 5

\section*{Additive Generators}

\section*{erator:}
\[
X_{n}= \begin{cases}\text { arbitary value, } & n<55 \\ \left(X_{n-24}+X_{n-55}\right) \bmod 2^{e}, & n \geq 55\end{cases}
\]
es than 24 and 55 possible.
period of \(2^{f}\left(2^{55}-1\right)\), for some \(f<e\).
mentation with circular buffer:
55;
\(+31) \% 55\); ; // Why +31 (55-24) instead of -24 ?
/* modulo \(2^{32}\) */
54] is initialized to some "random" initial seed val-

12:442017
CS618: Lecture \#32 8

\section*{What Can Go Wrong (II)?}
ds to bad correlations.
S IBM generator RANDU: \(c=0, a=65539, m=2^{31}\).
1 U is used to make 3D points: \(\left(X_{i} / S, X_{i+1} / S, X_{i+2} / S\right)\) es to a unit cube.
be arranged in parallel planes with voids between. So its" won't ever get near many points in the cube:


\footnotetext{
is SC BY-SA 3.0, https:///commons.wikimedia.org/w/index.php?curid= 3832343
12:44 2017
CS61B: Lecture \#32
}

\section*{aphic Pseudo-Random Number Generator Example}

1 good block cipher-an encryption algorithm that en\(s\) of \(N\) bits (not just one byte at a time as for Enigma). ample.
ovide a key, \(K\), and an initialization value \(I\).
ıdo-random number is now \(E(K, I+j)\), where \(E(x, y)\) is on of message \(y\) using key \(x\).

\section*{Iphic Pseudo-Random Number Generators}
orm of linear congruential generators means that one ;uture values after seeing relatively few outputs.
you want unpredictable output (think on-line games iny or randomly generated keys for encrypting your web
phic pseudo-random number generator (CPRNG) has the nat
ts of a sequence, no polynomial-time algorithm can guess bit with better than \(50 \%\) accuracy.
current state of the generator, it is also infeasible to ct the bits it generated in getting to that state.

\section*{Adjusting Range (II)}
jias problems when \(n\) does not evenly divide \(2^{48}\). Java alues after the largest multiple of \(n\) that is less than
integer
next random long ( \(0 \leq X<2^{48}\) );
next random
n top \(k\) bits of x ;
\(=\) largest multiple of \(n\) that is \(<2^{48}\);
largest \(m\)
\(>=\) MAX)
next random
i / (MAX/n);

12:44 2017
CS618: Lecture \#32 12

\section*{Adjusting Range and Distribution}
quence of numbers, \(X_{i}\), from above methods in range \({ }^{48}\), how to get uniform random integers in range 0 to
easy: use top \(k\) bits of next \(X_{i}\) (bottom \(k\) bits not as
be careful of slight biases at the ends. For example, if \(X_{i} /\left(2^{48} / n\right)\) using all integer division, and if \(\left(2^{48} / n\right)\) gets \(n\), then you can get \(n\) as a result (which you don't want).
fix that by computing \(\left(2^{48} /(n-1)\right)\) instead, the probaing \(n-1\) will be wrong.

\section*{ieneralizing: Other Distributions}
have some desired probability distribution function, and andom numbers that are distributed according to that How can we do this?
e normal distribution:

desired probability distribution \(P(Y \leq X)\) is the probandom variable \(Y\) is \(\leq X\).

12:442017
CS618: Lecture \#32 14

\section*{Arbitrary Bounds}
rbitrary range of integers ( \(L\) to \(U\) )?
m float, \(x\) in range \(0 \leq x<d\), compute
extInt (1<<24) / (1<<24);
ple a bit more complicated: need two integers to get
nd \(=((\) long \()\) nextInt \((1 \ll 26) \ll 27)+\) (long) nextInt (1<<27); bigRand / (1L << 53);

\section*{Java Classes}
(): random double in [0..1)
til . Random: a random number generator with construc-
nerator with "random" seed (based on time).
1) generator with given starting value (reproducible)
- random integer
nt in range [0..n).
andom 64-bit integer
(), nextFloat(), nextDouble() Next random values of other types.
\(n()\) normal distribution with mean 0 and standard deviaell curve").
.shuffle \((L, R)\) for list \(R\) and Random \(R\) permutes \(L\) ing \(R\) ).

12:44 2017
CS618: Lecture \#32 16

\section*{Other Distributions}
e \(y\) uniformly between 0 and 1, and the corresponding \(x\) will be distributed according to \(P\).
```

$X \leq Y)$

```


\section*{Random Selection}

\section*{que would allow us to select \(N\) items from list:}
and return sublist of \(\mathrm{K}>=0\) randomly
ments of L , using R as random source. */
st L, int k, Random R)
L.size(); i+k > L.size(); i -= 1)
ht i-1 of L with element
t(i) of L;
list(L.size()-k, L.size())
efficient for selecting random sequence of \(K\) distinct n \(0 . . N)\), with \(K \ll N\).

\section*{Shuffling}
a random permutation of some sequence.
b technique for sorting \(N\)-element list:
\(N\) random numbers
ch to one of the list elements
ist using random numbers as keys.
a bit better:
ist L, Random R) \{
\(=\) L.size(); i > 0; i -= 1)
ement \(i-1\) of \(L\) with element R.nextInt(i) of \(L\);

```

rnative Selection Algorithm (Floyd)
nnce of K distinct integers
0<=K<=N. */
ts(int N, int K, Random R)
pw IntList();
N-K; i < N; i += 1) {
\&s in S are < i
mdInt(i+1); // 0
jet(j) for some j)
value i (which can't be there
ter the s (i.e., at a random
ther than the front)
i);
random value s at front
p);

Example

i	s	S
54		

54 [4]
62 [2, 4]
$75[5,2,4]$
$85[5,8,2,4]$
$94[5,8,2,4,9]$
selectRandomIntegers(10, 5, R)

CS618: Lecture \#32 19

