Why Random Sequences?

stical samples

rithms
yl
random keys

g streams of random bits (e.g., SSL xor’s your data with
ntable, pseudo-random bit stream that only you and the
can generate).

ke, games

2:44 2017 CS61B: Lecture #32 2

Pseudo-Random Sequences

1able, a “truly” random sequence is difficult for a com-
mnan) to produce.

'poses, need only a sequence that satisfies certain sta-
zrties, even if deterministic.

e.g., cryptography) need sequence that is hard or im-
predict.

om sequence: deterministic sequence that passes some
statistical tests.

, look at lengths of runs: increasing or decreasing con-
equences.

ly, statistical criteria to be used are quite involved. For
<nuth.

12:44 2017 CS61B: Lecture #32 4

What Can Go Wrong (I)?

Is, many impossible values: E.g., a, ¢, m even.
rerns. E.g., just using lower 3 bits of X; in Java's 48-bit
» get integers in range O to 7. By properties of modular
mod 8 = (25214903917X;_; + 11 mod 2*¢) mod 8

= (5(X;-1 mod 8) + 3) mod 8

period of 8 on this generator; sequences like

le. This is why Java doesn't give you the raw 48 bits.

12:44 2017 CS61B: Lecture #32 6

CS61B Lecture #32

pm Numbers (Chapter 11)

e random sequences?

andom sequences"?

pm sequences.

ne.

a library classes and methods.

nutations.

2:44 2017 CS61B: Lecture #32 1

What Is a “"Random Sequence”?

“a sequence where all humbers occur with equal fre-

3,4,...?

»w about: “an unpredictable sequence where all humbers
qual frequency?”

0,1,1,2,2,2,2,2,3,4,40,1,1,1,...2

it is wrong with 0, 0, 0, O, ...anyway? Can't that occur
zlection?

12:44 2017 CS61B: Lecture #32 3

lerating Pseudo-Random Sequences

as you might think.
implex jumbling methods can give rise to bad sequences.
uential method is a simple method used by Java:

Xy = arbitrary seed
X; (aX;—14+c¢)modm, i>0

large power of 2.

sults, want @ = 5mod 8, and a, ¢, m with no common

:nerator with a period of m (length of sequence before
ind reasonable potency (measures certain dependencies
znt X;.)

ts of a to “have no obvious pattern” and pass certain
(see Knuth).

= 25214903917, ¢ = 11, m = 2%, to compute 48-bit
om numbers. It's good enough for many purposes, but
aphically secure.

12:44 2017 CS61B: Lecture #32 5

Additive Generators

erator:

Y _ arbitary value, n <55
" (XufZ-l + an55) mod 2(’7 n > 55

es than 24 and 55 possible.
period of 2/(2° — 1), for some f < e.
mentation with circular buffer:

55;
+31) % 55]; // Why +31 (55-24) instead of -247
/* modulo 2% */

54] is initialized to some “random" initial seed val-

2:44 2017 CS61B: Lecture #32 8

aphic Pseudo-Random Number Generator
Example

1 good block cipher—an encryption algorithm that en-
s of N bits (not just one byte at a time as for Enigma).
ample.

rovide a key, K, and an initialization value I.

1do-random number is now E(K, I + j), where E(z,y) is
on of message y using key x.

12:44 2017 CS61B: Lecture #32 10

Adjusting Range (IT)

dias problems when n does not evenly divide 2'¢, Java
'alues after the largest multiple of n that is less than

integer in the range O .. n-1, n>0. */
t(int n) {

next random long (0 < X < 2'%);
2F for some k)
rn top k bits of X;

= largest multiple of n that is < 2'%;
i >= MAX)

next random long (0 < X < 2%);
i/ (MAX/n);

12:44 2017 CS61B: Lecture #32 12

What Can Go Wrong (II)?

ds to bad correlations.
5 IBM generator RANDU: ¢ = 0, a = 65539, m = 25%.

U is used to make 3D points: (X;/S, Xi1/S, Xi12/S),
es to a unit cube, ...

be arranged in parallel planes with voids between. So
ts” won't ever get near many points in the cube:

is Sanchez at English Wikipedia - Transferred from en.wikipedia to Commons
., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3832343]

2:44 2017 CS61B: Lecture #32 7

iphic Pseudo-Random Number Generators

‘orm of linear congruential generators means that one
‘uture values after seeing relatively few outputs.

you want unpredictable output (think on-line games in-
y or randomly generated keys for encrypting your web

shic pseudo-random number generator (CPRNG) has the
nat

ts of a sequence, no polynomial-time algorithm can guess
>it with better than 50% accuracy.

current state of the generator, it is also infeasible to
ct the bits it generated in getting to that state.

12:44 2017 CS61B: Lecture #32 9

Adjusting Range and Distribution

:quence of numbers, X;, from above methods in range
18, how to get uniform random integers in range O to

easy: use top k bits of next X; (bottom k bits not as

be careful of slight biases at the ends. For example, if
X;/(2* /n) using all integer division, and if (2/n) gets
n, then you can get n as a result (which you don't want).
) fix that by computing (2!3/(n — 1)) instead, the proba-
ting n — 1 will be wrong.

12:44 2017 CS61B: Lecture #32 11

reneralizing: Other Distributions

nave some desired probability distribution function, and
random numbers that are distributed according to that
How can we do this?

¢ normal distribution:

o

desired probability distribution P(Y < X) is the prob-
andom variable Y is < X.

2:44 2017 CS61B: Lecture #32 14

Java Classes

10 random double in [0..1).

til.Random: a random number generator with construc-

nerator with "random” seed (based on time).
1) generator with given starting value (reproducible).

t random integer
nt in range [0..n).
andom 64-bit integer.

(), nextFloat(), nextDouble() Next random values of other
types.

n() normal distribution with mean O and standard devia-
I curve").

i.shuffle(L,R) for list R and Random R permutes L
ing R).

12:44 2017 CS61B: Lecture #32 16

Random Selection

que would allow us to select N items from list:

and return sublist of K>=0 randomly
:ments of L, using R as random source. */
lst L, int k, Random R) {

s L.size(); i+k > L.size(); i -= 1)
int i-1 of L with element
1t (i) of L;

blist(L.size()-k, L.size());

efficient for selecting random sequence of K distinct
n [0.NV), with K < N.

12:44 2017 CS61B: Lecture #32 18

Arbitrary Bounds

rbitrary range of integers (L to U)?
m float, x in range 0 < = < d, compute

pxtInt (1<<24) / (1<<24);

le a bit more complicated: need two integers to get

pd = ((long) nextInt(1<<26) << 27) + (long) nextInt(1<<27);
bigRand / (1L << 53);

Other Distributions

e y uniformly between O and 1, and the corresponding
will be distributed according to P.

Shuffling

a random permutation of some sequence.
b technique for sorting N-element list:
N random numbers

ich to one of the list elements

list using random numbers as keys.

a bit better:

.ist L, Random R) {
= L.size(); i > 0; i -= 1)
lement i-1 of L with element R.nextInt(i) of L;

1 2 3 4 5 Swap items o 1 2 3

4

5

V2838 [AV[2030 3e=3 [AR]39]20]A0]3& 28]

NEENWSEIEY 2420 [29]30]A%]AV]384] 28]

NEEIMEIRY le=0 [30]20[AS[AD]3&] 28]
2:44 2017 CS61B: Lecture #32 13 12:44 2017 CS61B: Lecture #32 15 12:44 2017 CS61B: Lecture #32 17

rnative Selection Algorithm (Floyd)

nce of K distinct integers
0<=K<=N. */
ts(int N, int K, Random R)

w IntList();

-K; 1 <N; i+=1) {

s in S are < i
iIndInt(i+1); // 0 <= s <= i <N
et (j) for some j)

value i (which can’t be there
ter the s (i.e., at a random
ther than the front)

i);

random value s at front

);

2:44 2017

Example

selectRandomIntegers(10, 5, R)

CS61B: Lecture #3219

	CS61B Lecture #32
	Why Random Sequences?
	What Is a ``Random Sequence''?
	Pseudo-Random Sequences
	Generating Pseudo-Random Sequences
	What Can Go Wrong (I)?
	What Can Go Wrong (II)?
	Additive Generators
	Cryptographic Pseudo-Random Number Generators
	Cryptographic Pseudo-Random Number Generator Example
	Adjusting Range and Distribution
	Adjusting Range (II)
	Arbitrary Bounds
	Generalizing: Other Distributions
	Other Distributions
	Java Classes
	Shuffling
	Random Selection
	Alternative Selection Algorithm (Floyd)

