Why Graphs?

ng non-hierarchically related items
: pipelines, roads, assignment problems
ring processes: flow charts, Markov models
ring partial orderings: PERT charts, makefiles

39:28 2017
CS618: Lecture \#33 2

CS61B Lecture \#33

will run this evening.
gs: Graph Structures: DSIJ, Chapter 12

Some Pictures

39:28 2017
C5618: Lecture \#33 4

Some Terminology

sists of
10des (aka vertices)
dges: pairs of nodes.
th an edge between are adjacent.
3 on problem, nodes or edges may have labels (or weights)
| node set $V=\left\{v_{0}, \ldots\right\}$, and edge set E.
have an order (first, second), they are directed edges, a directed graph (digraph), otherwise an undirected
cident to their nodes.
jes exit one node and enter the next.
path without repeated edges leading from a node back lowing arrows if directed).
yclic if it has a cycle, else acyclic. Abbreviation: Dilic Graph-DAG.

Examples of Use

ecting road, with length

be completed before; Node label = time to complete.

$+$

39:28 2017
C561B: Lecture \#33 6

Trees are Graphs

onnected if there is a (possibly directed) path between nodes.
le node of the pair is reachable from the other.
-ooted) tree iff connected, and every node but the root one parent.
, acyclic, undirected graph is also called a free tree. ree to pick the root; e.g.,
\qquad
(d)

Representation

I to number the nodes, and use the numbers in edges. presentation: each node contains some kind of list (e.g., array) of its successors (and possibly predecessors)
1:

2:

(3)
3:

ollection of all edges. For graph above:

$$
\{(1,2),(1,3),(2,3)\}
$$

atrix: Represent connection with matrix entry:
1
2
3
3 $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

39:28 2017
CS618: Lecture \#33 8

More Examples

relationship

state might be (with probability)

state in state machine, label is triggering input. (Start istate 4 means "there is a substring '001' somewhere in

ive Depth-First Traversal of a Graph

ng and combinatorial problems using the "bread-crumb" in earlier lectures for a maze.
k nodes as we traverse them and don't traverse previ1 nodes.
to talk about preorder and postorder, as for trees.

Traversing a Graph

hms on graphs depend on traversing all or some nodes.
se recursion because of cycles.
ic graphs, can get combinatorial explosions:

he root and do recursive traversal down the two edges hode: $\Theta\left(2^{N}\right)$ operations!
try to visit each node constant \# of times (e.g., once).

Topological Sorting

a DAG, find a linear order of nodes consistent with
the nodes v_{0}, v_{1}, \ldots such that v_{k} is never reachable $>k$.
(G) (G)

A	C	C
C	A	G
B	F	A
D	D	B
F	B	
E	G	D
G	E	H

H H
$39: 282017$
C5618: Lecture \#33 12

2 Depth-First Traversal of a Graph (II)

n interested in traversing all nodes of a graph, not just able from one node
epeat the procedure as long as there are unmarked
rderTraverse(Graph G) \{
$t \in$ nodes of G) \{
orderTraverse(G, v)
orderTraverse(Graph G) \{
\in nodes of G) \{
torderTraverse(G, v);

eneral Graph Traversal Algorithm

PF.VERTICES fringe;
IAL COLLECTION;
-.isEmpty()) \{
ringe.REMOVE_HIGHEST_PRIORITY_ITEM ()
$D(v))\{$
dge(v,w) \{
DS_PROCESSING (w))
to fringe;

ECTION_OF_VERTICES, INITIAL_COLLECTION, etc. pes, expressions, or methods to different graph algo-

39:28 2017
CS618: Lecture \#33 14

Sorting and Depth First Search

: Suppose we reverse the links on our graph.
ecursive DFS on the reverse graph, starting from node ple, we will find all nodes that must come before H. earch reaches a node in the reversed graph and there ssors, we know that it is safe to put that node first.
postorder traversal of the reversed graph visits nodes predecessors have been visited

Numbers show postorder traversal order starting from G: everything that must come before G.

epth-First Traversal Illustrated

a]

$[b, d]$

[e,e,d]
[e,d]
(d) ff

d]

(d) f

e, d]

(d)

39:28 2017

ortest Paths: Dijkstra's Algorithm

1 a graph (directed or undirected) with non-negative ompute shortest paths from given source node, s, to
sum of weights along path is smallest.
le, keep estimated distance from s, \ldots
eceding node in shortest path from s.
Vertex> fringe;
v $\{$ v.dist() $=\infty ; \operatorname{v.back}()=\operatorname{null} ;\}$
ty queue ordered by smallest .dist();
to fringe
.isEmpty()) \{
ringe.removeFirst()
$e(v, w)\{$
() + weight (v,w) < w.dist())
() $=\mathrm{v} . \operatorname{dist}()+$ weight (v, w); w.back() $=\mathrm{v}$; \}
:39:28 2017
C561B: Lecture \#33 18

Topological Sort in Action

nge.isEm
$=$ fringe.pop();
ed (v)) \{
; ;
l edge(v,w) \{
narked(w))
hge.push(w);

Example: Depth-First Traversal

every node reachable from v once, visiting nodes furfirst.
x> fringe;
ack containing $\{v\}$;
-

