
CS61B Lecture #34

search, Minimum spanning trees, union-find.

21:32:27 2017 CS61B: Lecture #34 1

Point-to-Point Shortest Path

algorithm gives you shortest paths from a particular given
all others in a graph.

suppose you’re only interested in getting to a particular vertex?

the algorithm finds paths in order of length, you could sim-
and stop when you get to the vertex you want.

can be really wasteful.

example, to travel by road from Denver to a destination on lower
Avenue in New York City is about 1750 miles (says Google).

traveling from Denver to the Gourmet Ghetto in Berkeley is
miles.

explore much of California, Nevada, Arizona, etc. before
our destination, even though these are all in the wrong

even worse when graph is infinite, generated on the fly.

21:32:27 2017 CS61B: Lecture #34 2

A* Search

looking for a path from vertex Denver to the desired NYC

that we had a heuristic guess, h(V), of the length of a path
vertex V to NYC.

suppose that instead of visiting vertices in the fringe in order
shortest known path to Denver, we order by the sum of

distance plus a heuristic estimate of the remaining distance to
Denver, V) + h(V).

words, we look at places that are reachable from places
already know the shortest path to Denver and choose
look like they will result in the shortest trip to NYC,

at the remaining distance.

estimate is good, then we don’t look at, say, Grand Junction
west by road), because it’s in the wrong direction.

resulting algorithm is A* search.

to work, we must be careful about the heuristic.

21:32:27 2017 CS61B: Lecture #34 3

Admissible Heuristics for A* Search

heuristic estimate for the distance to NYC is too high (i.e.,
the actual path by road), then we may get to NYC without

examining points along the shortest route.

example, if our heuristic decided that the midwest was literally
of nowhere, and h(C) = 2000 for C any city in Michigan or

we’d only find a path that detoured south through Kentucky.

admissible, h(C) must never overestimate d(C,NYC), the
path distance from C to NYC.

other hand, h(C) = 0 will work (what is the result?), but yield
non-optimal algorithm.

21:32:27 2017 CS61B: Lecture #34 4

Consistency

that we estimate h(Chicago) = 700, and h(Springfield, IL) =
d(Chicago, Springfield) = 200.

driving 200 miles to Springfield, we guess that we are sud-
miles closer to NYC.

admissible, since both estimates are low, but it will mess up
algorithm.

Specifically, will require that we put processed nodes back into the
case our estimate was wrong.

course, anyway) we also require consistent heuristics:
) + d(A,B), as for the triangle inequality.

consistent heuristics are admissible (why?).

project 3, distance “as the crow flies” is a good h(·) in the trip
application.

A* search (and others) is in cs61b-software and on the
instructional machines as graph-demo.

21:32:27 2017 CS61B: Lecture #34 5

Summary of Shortest Paths

algorithm finds a shortest-path tree computing giving
(backwards) shortest paths in a weighted graph from a given start-

all other nodes.

required =

remove V nodes from priority queue +

update all neighbors of each of these nodes and add or
them in queue (E lgE)

V + E lg V) = Θ((V + E) lg V)

searches for a shortest path to a particular target node.

Dijkstra’s algorithm, except:

when we take target from queue.

queue by estimated distance to start + heuristic guess of
remaining distance (h(v) = d(v, target))

Heuristic must not overestimate distance and obey triangle in-
(d(a, b) + d(b, c) ≥ d(a, c)).

21:32:27 2017 CS61B: Lecture #34 6

Minimum Spanning Trees

Given a set of places and distances between them (assume
positive), find a set of connecting roads of minimum total
that allows travel between any two.

routes you get will not necessarily be shortest paths.

see that such a set of connecting roads and places must
tree, because removing one road in a cycle still allows all to

reached.

21:32:27 2017 CS61B: Lecture #34 7

Minimum Spanning Trees by Prim’s Algorithm

grow a tree starting from an arbitrary node.

step, add the shortest edge connecting some node already
to one that isn’t yet.

this work?

fringe;

{ v.dist() = ∞; v.parent() = null; }

arbitrary starting node, s;

priority queue ordered by smallest .dist();
to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

fringe && weight(v,w) < w.dist())

= weight(v, w); w.parent() = v; }

A|0 B|∞

C|∞

D|∞ E|∞ F|∞

G|∞ H|∞

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

21:32:27 2017 CS61B: Lecture #34 8

Minimum Spanning Trees by Prim’s Algorithm

grow a tree starting from an arbitrary node.

step, add the shortest edge connecting some node already
to one that isn’t yet.

this work?

fringe;

{ v.dist() = ∞; v.parent() = null; }

arbitrary starting node, s;

priority queue ordered by smallest .dist();
to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

fringe && weight(v,w) < w.dist())

= weight(v, w); w.parent() = v; }

A|0 B|2

C|5

D|3 E|∞ F|∞

G|7 H|∞

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

21:32:27 2017 CS61B: Lecture #34 9

Minimum Spanning Trees by Prim’s Algorithm

grow a tree starting from an arbitrary node.

step, add the shortest edge connecting some node already
to one that isn’t yet.

this work?

fringe;

{ v.dist() = ∞; v.parent() = null; }

arbitrary starting node, s;

priority queue ordered by smallest .dist();
to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

fringe && weight(v,w) < w.dist())

= weight(v, w); w.parent() = v; }

A|0 B|2

C|4

D|3 E|3 F|∞

G|7 H|∞

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

21:32:27 2017 CS61B: Lecture #34 10

Minimum Spanning Trees by Prim’s Algorithm

grow a tree starting from an arbitrary node.

step, add the shortest edge connecting some node already
to one that isn’t yet.

this work?

fringe;

{ v.dist() = ∞; v.parent() = null; }

arbitrary starting node, s;

priority queue ordered by smallest .dist();
to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

fringe && weight(v,w) < w.dist())

= weight(v, w); w.parent() = v; }

A|0 B|2

C|2

D|3 E|3 F|1

G|7 H|2

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

21:32:27 2017 CS61B: Lecture #34 11

Minimum Spanning Trees by Prim’s Algorithm

grow a tree starting from an arbitrary node.

step, add the shortest edge connecting some node already
to one that isn’t yet.

this work?

fringe;

{ v.dist() = ∞; v.parent() = null; }

arbitrary starting node, s;

priority queue ordered by smallest .dist();
to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

fringe && weight(v,w) < w.dist())

= weight(v, w); w.parent() = v; }

A|0 B|2

C|2

D|3 E|3 F|1

G|7 H|2

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

21:32:27 2017 CS61B: Lecture #34 12

Minimum Spanning Trees by Prim’s Algorithm

grow a tree starting from an arbitrary node.

step, add the shortest edge connecting some node already
to one that isn’t yet.

this work?

fringe;

{ v.dist() = ∞; v.parent() = null; }

arbitrary starting node, s;

priority queue ordered by smallest .dist();
to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

fringe && weight(v,w) < w.dist())

= weight(v, w); w.parent() = v; }

A|0 B|2

C|2

D|3 E|3 F|1

G|1 H|2

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

21:32:27 2017 CS61B: Lecture #34 13

Minimum Spanning Trees by Prim’s Algorithm

grow a tree starting from an arbitrary node.

step, add the shortest edge connecting some node already
to one that isn’t yet.

this work?

fringe;

{ v.dist() = ∞; v.parent() = null; }

arbitrary starting node, s;

priority queue ordered by smallest .dist();
to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

fringe && weight(v,w) < w.dist())

= weight(v, w); w.parent() = v; }

A|0 B|2

C|2

D|3 E|3 F|1

G|1 H|2

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

21:32:27 2017 CS61B: Lecture #34 14

Minimum Spanning Trees by Prim’s Algorithm

grow a tree starting from an arbitrary node.

step, add the shortest edge connecting some node already
to one that isn’t yet.

this work?

fringe;

{ v.dist() = ∞; v.parent() = null; }

arbitrary starting node, s;

priority queue ordered by smallest .dist();
to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

fringe && weight(v,w) < w.dist())

= weight(v, w); w.parent() = v; }

A|0 B|2

C|2

D|3 E|3 F|1

G|1 H|2

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

21:32:27 2017 CS61B: Lecture #34 15

Minimum Spanning Trees by Prim’s Algorithm

grow a tree starting from an arbitrary node.

step, add the shortest edge connecting some node already
to one that isn’t yet.

this work?

fringe;

{ v.dist() = ∞; v.parent() = null; }

arbitrary starting node, s;

priority queue ordered by smallest .dist();
to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

fringe && weight(v,w) < w.dist())

= weight(v, w); w.parent() = v; }

A|0 B|2

C|2

D|3 E|3 F|1

G|1 H|2

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

21:32:27 2017 CS61B: Lecture #34 16

Minimum Spanning Trees by Kruskal’s Algorithm

Observation: the shortest edge in a graph can always be part of a
spanning tree.

we have a bunch of subtrees of a MST, then the shortest
connects two of them can be part of a MST, combining

subtrees into a bigger one.

one (trivial) subtree for each node in the graph;

edge(v,w), in increasing order of weight {

(v,w) connects two different subtrees) {

Add (v,w) to MST;

Combine the two subtrees into one;

21:32:27 2017 CS61B: Lecture #34 17

Union Find

algorithm required that we have a set of sets of nodes with
operations:

which of the sets a given node belongs to.

two sets with their union, reassigning all the nodes in the
original sets to this union.

thing to do is to store a set number in each node, making
fast.

requires changing the set number in one of the two sets being
the smaller is better choice.

means an individual union can take Θ(N) time.

be fast?

21:32:27 2017 CS61B: Lecture #34 18

A Clever Trick

choose to represent a set of nodes by one arbitrary represen-
node in that set.

node contain a pointer to another node in the same set.

for each pointer to represent the parent of a node in a tree
the representative node as its root.

what set a node is in, follow parent pointers.

two such trees, make one root point to the other (choose
of the larger tree as the union representative).

a

b c

d

g

e

f

a

b c

d

g

e

f

21:32:27 2017 CS61B: Lecture #34 19

Path Compression

makes unioning really fast, but the find operation potentially
)).

following trick: whenever we do a find operation, com-
path to the root, so that subsequent finds will be faster.

make each of the nodes in the path point directly to the

is very fast, and sequence of unions and finds each have
nearly constant amortized time.

find ‘g’ in last tree (result of compression on right):

a

b c

d

g

e

f

a

b c d g e

f

21:32:27 2017 CS61B: Lecture #34 20

	CS61B Lecture #34
	Point-to-Point Shortest Path
	A* Search
	Admissible Heuristics for A* Search
	Consistency
	Summary of Shortest Paths
	Minimum Spanning Trees
	Minimum Spanning Trees by Prim's Algorithm
	Minimum Spanning Trees by Kruskal's Algorithm
	Union Find
	A Clever Trick
	Path Compression

