Lecture #35

pramming and memoization.

Git.

[01:55 2017 CS61B: Lecture #35 2

Obvious Program

1kes it easy, again:

n(int[1 V) {

L, i, N = V.length;

0, total = 0; i < N; i += 1) total += V[i];
astSum(V, 0, N-1, total);

rgest sum obtainable by the first player in the choosing
n the list V[LEFT .. RIGHT], assuming that TOTAL is the
all the elements in V[LEFT .. RIGHT]. x*/

n(int[] V, int left, int right, int total) {

> right)

0;

= total - bestSum(V, left+l, right, total-V[leftl);

= total - bestSum(V, left, right-1, total-V[right]);
Math.max(L, R);

C(0) =1, C(N)=2C(N —1); so C(N) € 0(2")

01:55 2017 CS61B: Lecture #35 4

Iterative Version

: recursive version, but the usual presentation of this
as dynamic programming—is iterative:

n(int[1 V) {

nemo = new int[V.length] [V.length];
total = new int[V.length] [V.length];
i=0; i < V.length; i += 1)

J[1i] = totallil[i] = V[i];

k =1; k < V.length; k += 1)

at i = 0; i < V.length-k-1; i += 1) {
1[i] [i+k] = V[i] + totall[i+1] [i+k];
L = totalli] [i+k] - memo[i+1] [i+k];
R = totall[i] [i+k] - memo[i] [i+k-1];
[i] [i+k] = Math.max(L, R);

emo [0] [V.length-1];

‘igure out ahead of time the order in which the memo-
will fill in memo, and write an explicit loop.

ie needed to check whether result exists.

1y bother unless it's necessary to save space?
01:55 2017 CS61B: Lecture #35 6

Public-Service Announcement

ids,

n putting your engineering skills to the test? Join
nckathon this Friday and Saturday for a chance to
zes! Location: Berkeley Institute for Data Science,
rary, Berkeley, CA 94720, USA. Time: 5:00-9:00
entists, software engineers, policy makers, design-
repreneurs: join us for the 5th annual BERC Clean-
onl Teams have 24 hours to create hew solutions to
energy, environment, and climate, with a chance to
n cash prizes. Free food, beverages, and swag will
throughout the weekend. Details and Registration:
-hacks.eventbrite.com

$1000
$750
hoice: $250"

[01:55 2017 CS61B: Lecture #35 1

Dynamic Programming

Garcia):
n a list with an even number of non-negative integers.
er in turn takes either the leftmost number or the

get the largest possible sum.

irting with (6, 12, 0, 8), you (as first player) should take
ever the second player takes, you also get the 12, for a

Jar opponent plays perfectly (i.e., to get as much as pos-

an you maximize your sum?

s with exhaustive game-tree search.

01:55 2017 CS61B: Lecture #35 3

Still Another Idea from CS61A

is that we are recomputing intermediate results many

:moize the intermediate results. Here, we pass in an
' (N = V.length) of memoized results, initialized to -1.

n(int[] V, int left, int right, int total, int[][] memo) {
> right)

0;

(memo [left] [right] == -1) {

= total - bestSum(V, left+l, right, total-V[left], memo);
= total - bestSum(V, left, right-1, total-V[right], memo);
aft] [right] = Math.max(L, R);

smo [left] [right];

ber of recursive calls to bestSum must be Q(]\’Q), for
jth of V, an enormous improvement from ©(2™)!

01:55 2017 CS61B: Lecture #35 5

https://our-hacks.eventbrite.com

oized Longest Common Subsequence

ngest common subsequence of SO[0..k0-1]
r1] (pseudo Java) */

fring SO, int kO, String S1, int k1) {
new int[k0+1] [k1+1];

: memo) Arrays.fill(row, -1);

k0, S1, k1, memo);

k1 == 0) return O;

1] ==-1 {

== S1[k1-1])

1] = 1 + 11s(S0, k0-1, S1, ki-1, memo);

L] = Math.max(11s(S0, k0O-1, S1, ki, memo),
11s(S0, kO, S1, ki-1, memo));

[k11;

ill the memoized version be?

[01:55 2017 CS61B: Lecture #35 8

nt 11ls(String SO, int kO, String S1, int k1, int[][] memo) {

iIse Study in System and Data-Structure
Design

ibuted version-control system, apparently the most pop-
: currently.

, it stores shapshots (versions) of the files and direc-
Ire of a project, keeping track of their relationships,
es, and log messages.

Ited, in that there can be many copies of a given repos-
supporting indepenent development, with machinery to
| reconcile versions between repositories.

nis extremely fast (as these things go).

01:55 2017 CS61B: Lecture #35 10

Major User-Level Features (I)

is of a graph of versions or snapshots (called commits)
e project.

fructure reflects ancestory: which versions came from

contains
ry tree of files (like a Unix directory).
'on about who committed and when.
1ge.
o commit (or commits, if there was a merge) from which
it was derived.

01:55 2017 CS61B: Lecture #35 12

Longest Common Subsequence

d length of the longest string that is a subsequence of
pther strings.

hgest common subsequence of
L1s,sea shells by the seashore" and
Ld salt_sellers at_the_ salt_mines"

Lisells, the sae" (length 23)
sting, for example.
rsive algorithm:

of longest common subsequence of SO[0..k0-1]
[0..k1-1] (pseudo Java) */

11s(String SO, int kO, String S1, int k1) {

EO |l kI ==0) return 0;

-1] == S1[k1-1]) return 1 + 11s(S0, k0-1, S1, ki-1);

but obviously memoizable.

[01:55 2017 CS61B: Lecture #35 7

prn Math.max(11s(SO, k0-1, S1, k1), 11s(S0, kO, S1, ki-1);

loized Longest Common Subsequence

ngest common subsequence of S0[0..k0-1]
-1] (pseudo Java) */
tring SO, int kO, String S1, int k1) {
new int[k0+1] [k1+1];

: memo) Arrays.fill(row, -1);

k0, S1, k1, memo);

nt 11s(String S0, int kO, String S1, int k1, int[][] memo) {

k1 == 0) return 0;

1] == -1) {

== S1[k1-11)

1] = 1 + 11s(S0, k0-1, S1, ki1-1, memo);

1] = Math.max(11s(SO, kO-1, S1, k1, memo),
11s(S0, k0, S1, k1-1, memo));

1 [k1];

1ill the memoized version be? O(k - ki)

01:55 2017 CS61B: Lecture #35 9

A Little History

¢ Linus Torvalds and others in the Linux community when
:r of their previous, propietary VCS (Bitkeeper) with-
le version.

nentation effort seems to have taken about 2-3 months,
he 2.6.12 Linux kernel release in June, 2005.

ame, according to Wikipedia,

ds has quipped about the name Git, which is British
ang meaning “unpleasant person”. Torvalds said: "I'm
ical bastard, and T name all my projects after myself.

X', now ‘git"" The man page describes Git as "“the
tent tracker.”

i a collection of basic primitives (now called “plumbing")
2 scripted to provide desired functionality.

*-level commands (“porcelain”) built on top of these to
wenient user interface.

01:55 2017 CS61B: Lecture #35 11

Commits, Trees, Files

bn Ver‘zsion . Ver'3sion

Trees

Commits

Dashed lines link objects
that are the same

Blobs (files)

[01:55 2017 CS61B: Lecture #35 14

Major User-Level Features (II)

has a hame that uniquely identifies it to all versions.
can transmit collections of versions to each other.

) a commit from repository A to repository B requires
nsmission of those objects (files or directory trees)
not yet have (allowing speedy updating of repositories).

maintain named branches, which are simply identifiers
* commits that are updated to keep track of the most
lits in various lines of development.

15 are essentially named pointers to particular commits.
branches in that they are not usually changed.

01:55 2017 CS61B: Lecture #35 16

The Pointer Problem

it are files. How should we represent pointers between

ible to transmit objects from one repository to another
nt contents. How do you transmit the pointers?

1 tfransfer those objects that are missing in the target
dow do we know which those are?

counter in each repository to give each object there a
But how can that work consistently for two indepen-
ories?

01:55 2017 CS61B: Lecture #35 18

Conceptual Structure

| components consist of four types of object:

ically hold contents of files.

ectory structures of files.

Contain references to trees and additional information
r, date, log message).

ferences to commits or other objects, with additional
pn, intended to identify releases, other important ver-
arious useful information. (Won't mention further to-

[01:55 2017 CS61B: Lecture #35 13

rsion Histories in Two Repositories

Repository 2

Repository 2

01:55 2017 CS61B: Lecture #35 15

after pushing V6 to it

Internals

osifory is contained in a directory.

nay either be bare (just a collection of objects and
r may be included as part of a working directory.

the repository is stored in various objects correspond-
or other “leaf” content), trees, and commits.

e, data in files is compressed.

age-collect the objects from time to time to save addi-

01:55 2017 CS61B: Lecture #35 17

How A Broken Idea Can Work

o use a hash function that is so unlikely o have a colli-
can ignore that possibility.

ic Hash Functions have relevant property.

ion, f, is designed to withstand cryptoanalytic attacks.
, should have

resistance: given h = f(m), should be computationally
to find such a message m.

e-image resistance: given message m, should be infea-
nd my # my such that f(my) = f(ma).

esistance: should be difficult to find any two messages
uch that f(my) = f(ma).

roperties, scheme of using hash of contents as name is
likely to fail, even when system is used maliciously.

[01:55 2017 CS61B: Lecture #35 20

ontent-Addressable File System

me way of naming objects that is universal.
names, then, as pointers.

Which objects don't you have?" problem in an obvious

, what is invariant about an object, regardless of repos-
ontents.

the contents as the name for obvious reasons.
hash of the contents as the address.
nt doesn't work!

p: Use it anyway!!

[01:55 2017 CS61B: Lecture #35 19

SHA1

41 (Secure Hash Function 1).
ind with this using the hashlib module in Python3.
ames in Git are therefore 160-bit hash codes of con-

commit in the shared CS61B repository could be fetched
vith
ickout 4641d45114656£2£d90b571ebf76649298060291

01:55 2017 CS61B: Lecture #35 21

	Public-Service Announcement
	Lecture #35
	Dynamic Programming
	Obvious Program
	Still Another Idea from CS61A
	Iterative Version
	Longest Common Subsequence
	Memoized Longest Common Subsequence
	Git: A Case Study in System and Data-Structure Design
	A Little History
	Major User-Level Features (I)
	Conceptual Structure
	Commits, Trees, Files
	Version Histories in Two Repositories
	Major User-Level Features (II)
	Internals
	The Pointer Problem
	Content-Addressable File System
	How A Broken Idea Can Work
	SHA1

