
Public-Service Announcement

Actuarial League will be hosting their First General Meet-
Tuesday, September 5th at 8 pm in [TBD] and Actuarial
Panel on Thursday, September 7th at 8 pm in [TBD]. See

for location updates. Free food and refreshments will
provided.

conducts mathematical and statistical analysis along-
science techniques to estimate financial risks. The ac-

career is consistently ranked as one of the best jobs. For
you who are looking for a challenging and rewarding ca-
a remarkable social reputation, becoming an actuary
great choice. A panel of professionals at our Actu-

Career Panel will share their experiences and answer your

Recreation

Prove that ⌊(2 +
√
3)n⌋ is odd for all integer n ≥ 0.

Shklarsky, N. N. Chentzov, I. M. Yaglom, The USSR Olympiad Problem

(1993), from the W. H. Freeman edition, 1962.]

16:20:03 2017 CS61B: Lecture #4 1

CS61B Lecture #4: Values and Containers

normally due at midnight Friday.

Simple classes. Scheme-like lists. Destructive vs. non-
destructive operations. Models of memory.

16:20:03 2017 CS61B: Lecture #4 2

Values and Containers

numbers, booleans, and pointers. Values never change.

’a’ true

containers contain values:

3x: L: p:

variables, fields, individual array elements, parameters.

16:20:03 2017 CS61B: Lecture #4 3

Structured Containers

containers contain (0 or more) other containers:

3

42

0

17
1

9
2

420

171

92

Object Array Object Empty Object

16:20:03 2017 CS61B: Lecture #4 4

Pointers

(or references) are values that reference (point to) con-

particular pointer, called null, points to nothing.

structured containers contain only simple containers, but
allow us to build arbitrarily big or complex structures any-

0 1

3
0

9
1

17
0

16:20:03 2017 CS61B: Lecture #4 5

Containers in Java

may be named or anonymous.

all simple containers are named, all structured contain-
anonymous, and pointers point only to structured containers.

(Therefore, structured containers contain only simple containers).

p: 3

h t

7

h t

simple container
(local variable)

structured containers
(anonymous)

named simple containers (fields)
within structured containers

assignment copies values into simple containers.

like Scheme and Python!

also has slice assignment, as in x[3:7]=..., which is short-
something else entirely.)

16:20:03 2017 CS61B: Lecture #4 6

Defining New Types of Object

declarations introduce new types of objects.

list of integers:

class IntList {
Constructor function (used to initialize new object)

cell containing (HEAD, TAIL). */

IntList(int head, IntList tail) {
.head = head; this.tail = tail;

of simple containers (fields)
WARNING: public instance variables usually bad style!

int head;

IntList tail;

16:20:03 2017 CS61B: Lecture #4 7

Primitive Operations

L:

Q:

IntList(3, null); L:

Q:

3

IntList(42, null); L:

Q:

3 42

+= 1;

== 43

L.tail.head == 43

L:

Q:

3 43

16:20:03 2017 CS61B: Lecture #4 8

Excursion: Another Way to View Pointers

folks find the idea of “copying an arrow” somewhat odd.

Alternative view: think of a pointer as a label , like a street address.

object has a permanent label on it, like the address plaque on

variable containing a pointer is like a scrap of paper with a
address written on it.

last:

result: 5 45

Alternative view:

#7last:

#7result: 5 #3
7

45
3

16:20:03 2017 CS61B: Lecture #4 9

Another Way to View Pointers (II)

a pointer to a variable looks just like assigning an integer
variable.

executing “last = last.tail;” we have

last:

result: 5 45

Alternative view:

#3last:

#7result: 5 #3
7

45
3

alternative view, you might be less inclined to think that as-
would change object #7 itself, rather than just “last”.

Internally, pointers really are just numbers, but Java
them as more than that: they have types, and you can’t just
integers into pointers.

16:20:03 2017 CS61B: Lecture #4 10

Destructive vs. Non-destructive

Given a (pointer to a) list of integers, L, and an integer in-
return a list created by incrementing all elements of the list

of all items in P incremented by n. Does not modify

existing IntLists. */

IntList incrList(IntList P, int n) {
return /*(P, with each element incremented by n)*/

incrList is non-destructive, because it leaves the input objects
shown on the left. A destructive method may modify the

objects, so that the original data is no longer available, as shown

43

45

incrList(L, 2):

L:

Q:

5 45

After Q = dincrList(L, 2) (destructive):

16:20:03 2017 CS61B: Lecture #4 11

Nondestructive IncrList: Recursive

of all items in P incremented by n. */

IntList incrList(IntList P, int n) {
== null)

return null;

return new IntList(P.head+n, incrList(P.tail, n));

incrList have to return its result, rather than just set-

incrList(P, 2), where P contains 3 and 43, which IntList
gets created first?

16:20:03 2017 CS61B: Lecture #4 12

An Iterative Version

incrList is tricky, because it is not tail recursive.
build things first-to-last, unlike recursive version:

incrList(IntList P, int n) {
<<<

, last;

IntList(P.head+n, null);

!= null) {

IntList(P.head+n, null);

last.tail;

+

+
P: 3 43 56

16:20:03 2017 CS61B: Lecture #4 13

An Iterative Version

incrList is tricky, because it is not tail recursive.
build things first-to-last, unlike recursive version:

incrList(IntList P, int n) {

, last;

<<<
IntList(P.head+n, null);

!= null) {

IntList(P.head+n, null);

last.tail;

+

+
P: 3 43 56

last:

result: 5

16:20:03 2017 CS61B: Lecture #4 14

An Iterative Version

incrList is tricky, because it is not tail recursive.
build things first-to-last, unlike recursive version:

incrList(IntList P, int n) {

, last;

IntList(P.head+n, null);

!= null) {
<<<

IntList(P.head+n, null);

last.tail;

+

+
P: 3 43 56

last:

result: 5

16:20:03 2017 CS61B: Lecture #4 15

An Iterative Version

incrList is tricky, because it is not tail recursive.
build things first-to-last, unlike recursive version:

incrList(IntList P, int n) {

, last;

IntList(P.head+n, null);

!= null) {

<<<
IntList(P.head+n, null);

last.tail;

+

+
P: 3 43 56

last:

result: 5 45

16:20:03 2017 CS61B: Lecture #4 16

An Iterative Version

incrList is tricky, because it is not tail recursive.
build things first-to-last, unlike recursive version:

incrList(IntList P, int n) {

, last;

IntList(P.head+n, null);

!= null) {

IntList(P.head+n, null);

last.tail; <<<

+

+
P: 3 43 56

last:

result: 5 45

16:20:03 2017 CS61B: Lecture #4 17

An Iterative Version

incrList is tricky, because it is not tail recursive.
build things first-to-last, unlike recursive version:

incrList(IntList P, int n) {

, last;

IntList(P.head+n, null);

!= null) {
<<<

IntList(P.head+n, null);

last.tail;

+

+
P: 3 43 56

last:

result: 5 45

16:20:03 2017 CS61B: Lecture #4 18

An Iterative Version

incrList is tricky, because it is not tail recursive.
build things first-to-last, unlike recursive version:

incrList(IntList P, int n) {

, last;

IntList(P.head+n, null);

!= null) {

<<<
IntList(P.head+n, null);

last.tail;

+

+
P: 3 43 56

last:

result: 5 45 58

16:20:03 2017 CS61B: Lecture #4 19

An Iterative Version

incrList is tricky, because it is not tail recursive.
build things first-to-last, unlike recursive version:

incrList(IntList P, int n) {

, last;

IntList(P.head+n, null);

!= null) {

IntList(P.head+n, null);

last.tail; <<<

+

+
P: 3 43 56

last:

result: 5 45 58

16:20:03 2017 CS61B: Lecture #4 20

	Public-Service Announcement
	CS61B Lecture #4: Values and Containers
	Values and Containers
	Structured Containers
	Pointers
	Containers in Java
	Defining New Types of Object
	Primitive Operations
	Side Excursion: Another Way to View Pointers
	Another Way to View Pointers (II)
	Destructive vs. Non-destructive
	Nondestructive IncrList: Recursive
	An Iterative Version

