Public-Service Announcement II

Political Computer Science @ Berkeley! PCS harints' intellectual capabilities and potential in CS and affairs to address current issues within the United and political systems.
dy have an Amazon Alexa Skill called Political Punbout to be published; it is able to give responses to ut politics/government
he many other projects that we have in the works - gerrymandering, campaign finance, Alexa, and more), site: pcsberkeley.wixsite.com/pcsberkeley w accepting applications for the 2017-2018 school takes 5 minutes to complete)! Apply on our website!"

Recreation

lof the coefficients of

$$
\left(1-3 x+3 x^{2}\right)^{743}\left(1+3 x-3 x^{2}\right)^{744}
$$

and collecting terms?
19:38 2017
C561B: Lecture \#6 2

Public-Service Announcement I

an engineer, designer, or entrepreneur? Come check evelopers of Berkeley. We create end-to-end soludiverse breath of skills. Our members hone their tend, backend, design, and engineering while develerstanding of topics such as software architecture, perating systems, and networking. We build apps vide range of industries while leveraging the latest in IOT, AI, fintech, ML, AR, and more. Join us for e tonight, Wednesday $9 / 6$. Our members will show and what it took to make them. Free food, fidget vag will also be there.
s://www.mobiledevsberkeley.org/ for further infor-

A Few Samples

CS61B Lecture \#6: Arrays

structured container whose components are
fixed integer.
e of length simple containers of the same type, numm 0 .
eld usually implicit in diagrams.)
nonymous, like other structured containers.
red to with pointers.
inted to by A,
A. length
\pm component i is $\mathrm{A}[i]$ (i is the index)
t feature: index can be any integer expression.

Example: Insert into an Array

t a call like insert(A, 2, "gnu") to convert (destruc-bear
gazelle gazelle hartebeest to
\qquad
bear gazelle gnu hartebeest
location K in ARR, moving items $K, K+1, \ldots$ to locations The last item in ARR is lost. */
ct (String [] arr, int k, String x) \{
r.length-1; i > k; 1 -= 1) // Why backwards?
i-1];
to this loop:
raycopy ($\underbrace{\text { arr, } \mathrm{k}}_{\text {from }}$, $\underbrace{\text { arr, } \mathrm{k}+1,}_{\text {to }} \underbrace{\text { arr.length- } \mathrm{k}-1}_{\text {\# to copy }}$) $; * /$

9:38 2017
C5618: Lecture \#6 6

Example: Accumulate Values

up the elements of array A.
(int[] A) \{

0 ; i < A.length; i += 1)
// New (1.5) syntax
for (int x : A)
N += x ;
d-core: could have written

```
i<A.length; N += A[i], i += 1)
```

just ;
don't: it's obscure.

Growing an Array

ose that we want to change the description above, so t2 (A, 2, "gnu") does not shove "skunk" off the end ws" the array.

bear
gazelle
hartebeest \dagger
skunk

bear gazelle gnu
hartebeest
skunk
, r, where r.length $=$ ARR.length $+1 ; r[0 . . \mathrm{K}-1]$
$\operatorname{ARR}[0 \ldots \mathrm{~K}-1], \mathrm{r}[\mathrm{k}]=\mathrm{x}, \mathrm{r}[\mathrm{K}+1 \ldots]$ same as $\operatorname{ARR}[\mathrm{K} .] .$. insert2(String [] arr, int k, String x) \{
$=$ new String[arr.length +1]:
0 , result, $0, k$);
k , result, $\mathrm{k}+1$, arr.length -k) ;
a different return type from insert2??
19:38 2017

(Aside) Java Shortcut

Can write just 'arraycopy' by including at the top of the
ic java.lang.System.arraycopy;
define the simple name arraycopy to be the equivalent g. System. arraycopy in the current source file."
ame for out so that you can write
(...);
println(...);
:laration like
ic java.lang.Math.*;
all the (public) static definitions in java. lang. Math and vailable in this source file by their simple names (the he last dot)."
unctions like sin, sqrt, etc.
19:38 2017
C561B: Lecture \#6

Example: Merging Program

1 two sorted arrays of ints, A and B, produce their l array containing all from A and B.
der to solve this recursively, it is useful to generalize etion to allow merging portions of the arrays.
ad B are sorted, returns their merge. */
[[] merge (int [] A, int [] B) \{
A, $0, B, 0$);
$\mathrm{A}[\mathrm{LO} .$.$] and \mathrm{B}[\mathrm{L} 1 .$.$] assuming \mathrm{A}$ and B sorted. */
ge(int [] A, int L0, int [] B, int L1) \{
gth - LO + B.length - L1; int [] C = new int [N]
ength) arraycopy (B, L1, C, O, N) :
ength $) \operatorname{arraycopy}(\mathrm{B}, \mathrm{L}, \mathrm{C}, \mathrm{O}, \mathrm{N})$;
$=$ B.length $) \operatorname{arraycopy}(\mathrm{A}, \mathrm{LO}, \mathrm{C}, \mathrm{O}, \mathrm{N})$; What is wrong with i <= $\mathrm{B}[\mathrm{L1} 1]$) \{ this implementation?
b]; arraycopy (merge(A, L0+1, B, L1), 0, C, 1, N-1);
1]; $\operatorname{arraycopy}(\operatorname{merge}(A, L 0, B, L 1+1), ~ 0, ~ C, ~ 1, ~ N-1) ; ~$

19:38 2017
C561B: Lecture \#6 10

Example: Merging

1 two sorted arrays of ints, A and B, produce their \mid array containing all items from A and B.

A Tail-Recursive Solution

E[] merge(int[] A, int [] B) \{
$0, B, 0$, new int $[A . l e n g t h+B . l$ ength $], 0)$;
and $\mathrm{B}[\mathrm{L} 1 .$.$] into \mathrm{C}[\mathrm{K} . \mathrm{C}]$, assuming A and B sorted. */ e(int[] A, int L0, int[] B, int L1, int [] C, int k) \{ ngth) /*? */
B. length) /* ? */
<= B[L1]) \{
b] ;

1];
,
:38 2017
CS618: Lecture \#6 12

A Tail-Recursive Strategy

t[] merge (int[] A, int[] B) \{
, $0, B, 0$, new int [A.length $+B$. length, 0$)$;
] and $\mathrm{B}[\mathrm{L} 1 .$.$] into \mathrm{C}[\mathrm{K} .$.$] , assuming \mathrm{A}$ and B sorted. */
ge(int[] A, int L0, int[] B, int L1, int [] C, int k) \{
d merges part of A with part of B into part of C. For er a possible call merge (A, 3, B, 1, C, 2)

A Tail-Recursive Solution

```
E[] merge(int[] A, int[] B) {
A, 0, B, 0, new int[A.length+B.length], 0):
] and B[L1..] into C[K..], assuming A and B sorted. */
ge(int[] A, int LO, int[] B, int L1, int[] C, int k){
ength) arraycopy(B, L1, C, k, B.length-L1);
= B.length) arraycopy(A, LO, C, k, A.length-LO);
l= B[L1]) {
b] ;
1];

\section*{A Tail-Recursive Solution}

E[] merge(int[] A, int [] B) \{
\(A, 0, B, 0\), new int \([A . l\) ength \(+B\). length \(], 0)\);

1 and \(\mathrm{B}[\mathrm{L} 1 .\).\(] into \mathrm{C}[\mathrm{K} . \mathrm{]}\), assuming A and B sorted. */ ge(int[] A, int L0, int[] B, int L1, int[] C, int k) \{ ength) /* ? */
= B. length) /* ? */
] < \(\mathrm{B}[\mathrm{L} 1]\) ) \{
b] ;

1] ;

\section*{Iterative Solution}
lon't use either of the previous approaches in languages Array manipulation is most often iterative:
int [] merge(int[] A, int [] B) \{ new int[A.length + B.length \(]\);

\section*{Iterative Solution II}

E[] merge (int [] A, int [] B) \{
int [A.length + B. length] ;

0; k < C.length; k += 1) \{
A. length) \{
\(=\mathrm{B}[\mathrm{L} 1]\); L1 \(+=1\);
(L1 \(>=\) B. length) \(\{\)
\(=\mathrm{A}[\mathrm{LO}]\); LO \(+=1\);
( \(\mathrm{A}[\mathrm{LO} 0\) ) <= B[L1]) \{
\(=\mathrm{A}[\mathrm{LO}]\); LO \(+=1\);

\section*{Alternative Solution: Removing k}
ant of the loop is that \(\mathrm{k}=\mathrm{L} 0+\mathrm{L} 1\).
t[] merge (int[] A, int[] B) \{
int [A. length + B. length];

1 < C.length)
A.length) \{

L1] \(=\mathrm{B}[\mathrm{L} 1] ; \mathrm{L} 1+=1\);
(L1 >= B.length)
L1] = A[LO]; L0 += 1
(A[LO] <= B[L1]) \{
L1] \(=\mathrm{A}[\mathrm{LO} 0 ; \mathrm{L} 0+=1\);
\(+\mathrm{L} 1]=\mathrm{B}[\mathrm{L} 1] ; \mathrm{L} 1+=1\)
\(\longrightarrow\)

\section*{A Tail-Recursive Solution}
[ [] merge (int [] A, int [] B) \{
A, \(0, B, 0\), new int [A.length + B.length, 0 );
] and \(B[L 1 .\).\(] into C[K .\).\(] , assuming A\) and \(B\) sorted. */ ge(int [] A, int L0, int [] B, int L1, int [] C, int k) \{ ength) arraycopy (B, L1, C, k, B.length-L1);
\(=\) B.length ) arraycopy(A, LO, C, k, A.length-LO);
\(1<=B[L 1])\) \{
p+1, B, L1, C, k+1);
1]:
D, B, L1+1, C, \(k+1\) );
\(=\mathrm{B}[\mathrm{L} 1]\); L1 \(+=1\);

\section*{Multidimensional Arrays in Java}
primitive in Java, but we can build them as arrays of
ew int [3] [] ;
E] \(\{2,3,4,5\} ;\)
\(=[]\{4,9,16,25\} ;\)
E[] \(\{8,27,64,125\}\);
[] \(\{\{2,3,4,5\}\),
\(\{4,9,16,25\}\),
\(\{8,27,64,125\}\}\);
\(\{2,3,4,5\}\),
\(\{4,9,16,25\}\),
\(\{8,27,64,125\}\} ;\)
ew A[3] [4];
0; \(\mathrm{i}<3 ; \mathrm{i}+=1\) )
\(j=0 ; j<4 ; j+=1\)
\(\mathrm{j}]=\) (int) Math. pow \((\mathrm{j}+2, \mathrm{i}+1\) );
19:38 2017
C5618: Lecture \#6 20

\section*{Multidimensional Arrays}
- or higher-dimensional layouts, such as
\[
A=\begin{array}{|r|r|r|r|}
\hline 2 & 3 & 4 & 5 \\
\hline 4 & 9 & 16 & 25 \\
\hline 8 & 27 & 64 & 125 \\
\hline
\end{array} ?
\]

\section*{Exotic Multidimensional Arrays}
element of an array is independent, there is no single neral:

\section*{\(=\) new int [5] [] ;}
int [] \(\}\);
int [] \(\{0,1\}\)
\(\operatorname{int}[]\{2,3,4,5\}\)
int \([\{\{2,3,4\),
int \(]\{6,7,8\} ;\)
int [] \(\{9\}\);

his print?
RO = new int [3] [] ;
ZERO[1] = ZERO[2] =
ZERO [1] = ZERO
\(\mathrm{t}[\mathrm{l}\) \{ \(\{0\)
\(=1\);
println(ZERO [2] [1]);


19:38 2017
C561B: Lecture \#6 22

\section*{Exotic Multidimensional Arrays}
element of an array is independent, there is no single neral:
```

= new int [5][];
int[] {};
int[]{0, 1}
int[] {2, 3,4,5}
int[] {6,7,8};
int[] {9};

```

his print?
RO = new int [3] [] ;
\(\operatorname{ZERO}[1]=\operatorname{ZERO}[2]=\)
\(t[]\{0,0,0\}\);
\(=1\);
println(ZERO [2] [1]);```

