
Lecture #8: Object-Oriented Mechanisms

this lecture: the bare mechanics of “object-oriented pro-
gramming.”

general topic is: Writing software that operates on many kinds

18:13:06 2016 CS61B: Lecture #8 1

Overloading

How to get System.out.print(x) to print x, regardless of

or Python, one function can take an argument of any type,
test the type (if needed).

methods specify a single type of argument.

solution: overloading—multiple method definitions with the
and different numbers or types of arguments.

System.out has type java.io.PrintStream, which defines

println() Prints new line.
println(String s) Prints S.
println(boolean b) Prints "true" or "false"
println(char c) Prints single character
println(int i) Prints I in decimal

these is a different function. Compiler decides which to call
basis of arguments’ types.

18:13:06 2016 CS61B: Lecture #8 2

Generic Data Structures

How to get a “list of anything” or “array of anything”?

problem in Scheme or Python.

Java, lists (such as IntList) and arrays have a single type of

short answer: any reference value can be converted to
java.lang.Object and back, so can use Object as the “generic

(reference) type”:

things = new Object[2];

= new IntList(3, null);

= "Stuff";

((IntList) things[0]).head == 3;

((String) things[1]).startsWith("St") is true

things[0].head Illegal

things[1].startsWith("St") Illegal

18:13:06 2016 CS61B: Lecture #8 3

And Primitive Values?

values (ints, longs, bytes, shorts, floats, doubles, chars,
booleans) are not really convertible to Object.

problem for “list of anything.”

introduced a set of wrapper types, one for each primitive

Ref. Prim. Ref. Prim. Ref.
Byte short Short int Integer
Long char Character boolean Boolean
Float double Double

create new wrapper objects for any value (boxing):

Three = new Integer(3);

ThreeObj = Three;

vice-versa (unboxing):

three = Three.intValue();

18:13:06 2016 CS61B: Lecture #8 4

Autoboxing

versions, boxing and unboxing is automatic (in many cases):

Three = 3;

Three;

Three + 3;

someInts = { 1, 2, 3 };
: someInts) {

System.out.println(x);

System.out.println(someInts[0]); // Prints 3, but NOT unboxed.

18:13:06 2016 CS61B: Lecture #8 5

Dynamic vs. Static Types

value has a type—its dynamic type.

container (variable, component, parameter), literal, function
operator expression (e.g. x+y) has a type—its static type.

Therefore, every expression has a static type.

things = new Object[2];

new IntList(3, null);

"Stuff";

things:

Object[] Object Object

Object[]

Object[]

3

IntList

"Stuff"

String

int <nulltype>

int IntList

String

???

static type

container

dynamic type

value

18:13:06 2016 CS61B: Lecture #8 6



Type Hierarchies

container with (static) type T may contain a certain value only if
“is a” T—that is, if the (dynamic) type of the value is a

of T. Likewise, a function with return type T may return
that are subtypes of T.

are subtypes of themselves (& that’s all for primitive types)

types form a type hierarchy; some are subtypes of oth-
type is a subtype of all reference types.

reference types are subtypes of Object.

18:13:06 2016 CS61B: Lecture #8 7

Java Library Type Hierarchy (Partial)

double boolean ... Object

Integer Double Boolean String IntList int[] Object[]

String[]

<nulltype>

is a

(un)wraps to

18:13:06 2016 CS61B: Lecture #8 8

The Basic Static Type Rule

designed so that any expression of (static) type T always
value that “is a” T.

types are “known to the compiler,” because you declare them,

// Static type of field

Object s) { // Static type of call to f, and of parameter

// Static type of local variable

are pre-declared by the language (like 3).

insists that in an assignment, L = E, or function call, f(E),

(SomeType L) { ... },

type must be subtype of L’s static type.

rules apply to E[i] (static type of E must be an array) and
built-in operations.

18:13:06 2016 CS61B: Lecture #8 9

Coercions

of type short, for example, are a subset of those of
s are representable as 16-bit integers, ints as 32-bit

don’t say that short is a subtype of int, because they don’t
behave the same.

we say that values of type short can be coerced (con-
a value of type int.

slight fudge: compiler will silently coerce “smaller” inte-
to larger ones, float to double, and (as just seen) be-

primitive types and their wrapper types.

3002;

without complaint.

18:13:06 2016 CS61B: Lecture #8 10

Consequences of Compiler’s “Sanity Checks”

conservative rule. The last line of the following, which you
think is perfectly sensible, is illegal:

new int[2];

A; // All references are Objects

// Static type of A is array...

1; // But not of x: ERROR

figures that not every Object is an array.

we know that x contains array value!?

but still must tell the compiler, like this:

[]) x)[i+1] = 1;

Static type of cast (T) E is T.

if x isn’t an array value, or is null?

that we have runtime errors—exceptions.

18:13:06 2016 CS61B: Lecture #8 11

Overriding and Extension

so far is clumsy.

know Object variable x contains a String, why can’t I write,
x.startsWith("this")?

startsWith is only defined on Strings, not on all Objects, so the
isn’t sure it makes sense, unless you cast.

operation were defined on all Objects, then you wouldn’t
clumsy casting.

.toString() is defined on all Objects. You can always say
x.toString() if x has a reference type.

default .toString() function is not very useful; on an IntList,
produce string like "IntList@2f6684"

any subtype of Object, you may override the default defi-

18:13:06 2016 CS61B: Lecture #8 12



Overriding toString

example, if s is a String, s.toString() is the identity function
(fortunately).

type you define, you may supply your own definition. For
IntList, could add

String toString() {

StringBuffer b = new StringBuffer();

b.append("[");

IntList L = this; L != null; L = L.tail)

b.append(" " + L.head);

b.append("]");

b.toString();

IntList(3, new IntList(4, null)), then x.toString()
.

Conveniently, the "+" operator on Strings calls .toStringwhen asked
an Object, and so does the "%s" formatter for printf.

trick, you can supply an output function for any type you

18:13:06 2016 CS61B: Lecture #8 13

Extending a Class

that class B is a direct subtype of class A (or A is a direct
of B), write

B extends A { ... }

default, class ... extends java.lang.Object.

subtype inherits all fields and methods of its superclass (and
them along to any of its subtypes).

you may override an instance method (not a static method),
providing a new definition with same signature (name, return

argument types).

that a method and all its overridings form a dynamic method

If f(...) is an instance method, then the call x.f(...)
whatever overriding of f applies to the dynamic type of x, re-

of the static type of x.

18:13:06 2016 CS61B: Lecture #8 14

Illustration

class Worker {

void work() {

collectPay();

}

}

extends Worker {

work()

class TA extends Worker {

void work() {

while (true) {

doLab(); discuss(); officeHour();

}

}

}

Prof(); | paul.work() ==> collectPay();

TA(); | daniel.work() ==> doLab(); discuss(); ...

paul, | wPaul.work() ==> collectPay();

daniel; | wDaniel.work() ==> doLab(); discuss(); ...

instance methods (only), select method based on dynamic
to state, but we’ll see it has profound consequences.

18:13:06 2016 CS61B: Lecture #8 15

What About Fields and Static Methods?

1;

() {

System.out.printf("Ahem!%n");

int x) {

class Child extends Parent {

String x = "no";

static String y = "way";

static void f() {

System.out.printf("I wanna!%n");

}

}

new Child(); | tom.x ==> no pTom.x ==> 0

tom; | tom.y ==> way pTom.y ==> 1

| tom.f() ==> I wanna! pTom.f() ==> Ahem!

| tom.f(1) ==> 2 pTom.f(1) ==> 2

Fields hide inherited fields of same name; static methods
of the same signature.
Hiding causes confusion; so understand it, but don’t do it!

18:13:06 2016 CS61B: Lecture #8 16

What’s the Point?

mechanism described here allows us to define a kind of generic

superclass can define a set of operations (methods) that are com-
many different classes.

can then provide different implementations of these
methods, each specialized in some way.

subclasses will have at least the methods listed by the super-

we write methods that operate on the superclass, they will
automatically work for all subclasses with no extra work.

18:13:06 2016 CS61B: Lecture #8 17


	CS61B Lecture #8: Object-Oriented Mechanisms
	Overloading
	Generic Data Structures
	And Primitive Values?
	Autoboxing
	Dynamic vs. Static Types
	Type Hierarchies
	Java Library Type Hierarchy (Partial)
	The Basic Static Type Rule
	Coercions
	Consequences of Compiler's ``Sanity Checks''
	Overriding and Extension
	Overriding toString
	Extending a Class
	Illustration
	What About Fields and Static Methods?
	What's the Point?

