
Public Service Announcement

everyone! We are calling all hackers, makers, and 4am’ers
Hacks 4.0—the worlds largest collegiate hackathon held
Berkeley! Registration is now open to UC Berkeleys. Get

a night full of hacking, making awesome programming
learning new APIs, meeting CEOs and tech executives,

free food, and so much learning!
Register now at www.calhacks.io (and we recommend you apply
team!)”

Recreation

any polynomial with a leading coefficient of 1 and integral
all rational roots are integers.

15:40:27 2017 CS61B: Lecture #9 1

Lecture #9: Interfaces and Abstract Classes

four projects are individual efforts in this class (no
partnerships). Feel free to discuss projects or pieces of them

doing the work. But you must complete and write up each
yourself. That is, feel free to discuss projects with each

be aware that we expect your work to be substantially
from that of all your classmates (in this or any other

semester).”

15:40:27 2017 CS61B: Lecture #9 2

Abstract Methods and Classes

method can be abstract: No body given; must be supplied
subtypes.

use is in specifying a pure interface to a family of types:

drawable object. */

abstract class Drawable {
"abstract class" = "can’t say new Drawable"

Expand THIS by a factor of SIZE */

abstract void scale(double size);

THIS on the standard output. */

abstract void draw();

Drawable is something that has at least the operations scale
on it.

create a Drawable because it’s abstract.

this case, it wouldn’t make any sense to create one, be-
has two methods without any implementation.

15:40:27 2017 CS61B: Lecture #9 3

Methods on Drawables

drawable object. */

abstract class Drawable {
Expand THIS by a factor of SIZE */

public abstract void scale(double size);

Draw THIS on the standard output. */

public abstract void draw();

new Drawable(), BUT, we can write methods that operate
Drawables in Drawable or in other classes:

drawAll(Drawable[] thingsToDraw) {
Drawable thing : thingsToDraw)

thing.draw();

has no implementation! How can this work?

15:40:27 2017 CS61B: Lecture #9 4

Concrete Subclasses

classes can extend abstract ones to make them “less ab-
overriding their abstract methods.

kinds of Drawables that are concrete, in that all methods
implementations and one can use new on them:

Rectangle extends Drawable {

Rectangle(double w, double h) { this.w = w; this.h = h; }

void scale(double size) { w *= size; h *= size; }

void draw() { draw a w x h rectangle }

double w,h;

Any Circle or Rectangle is a Drawable.

Circle extends Drawable {

Circle(double rad) { this.rad = rad; }

void scale(double size) { rad *= size; }

void draw() { draw a circle with radius rad }

double rad;

15:40:27 2017 CS61B: Lecture #9 5

Using Concrete Classes

create new Rectangles and Circles.

these classes are subtypes of Drawable, we can put them in
container whose static type is Drawable, . . .

therefore can pass them to any method that expects Drawable
parameters:

writing

Drawable[] things = {
new Rectangle(3, 4), new Circle(2)

drawAll(things);

4 rectangle and a circle with radius 2.

15:40:27 2017 CS61B: Lecture #9 6



Interfaces

English usage, an interface is a “point where interaction
between two systems, processes, subjects, etc.” (Concise
Dictionary).

programming, often use the term to mean a description of this
interaction, specifically, a description of the functions or
by which two things interact.

the term to refer to a slight variant of an abstract class
Java 1.7) contains only abstract methods (and static con-

like this:

interface Drawable {

(double size); // Automatically public.

();

Interfaces are automatically abstract: can’t say new Drawable();
Rectangle(...).

15:40:27 2017 CS61B: Lecture #9 7

Implementing Interfaces

treat Java interfaces as the public specifications of data
classes as their implementations:

class Rectangle implements Drawable { ... }

the interface as for abstract classes:

drawAll(Drawable[] thingsToDraw) {
Drawable thing : thingsToDraw)

thing.draw();

works for Rectangles and any other implementation of

15:40:27 2017 CS61B: Lecture #9 8

Multiple Inheritance

one class, but implement any number of interfaces.

Example:

Readable {

();

Writable {

Object x);

implements Readable {

Object get() { ... }

void copy(Readable r,

Writable w) {

w.put(r.get());

}

class Sink implements Writable {

public void put(Object x) { ... }

}

class Variable implements Readable, Writable {

public Object get() { ... }

public void put(Object x) { ... }

}

argument of copy can be a Source or a Variable. The
be a Sink or a Variable.

15:40:27 2017 CS61B: Lecture #9 9

Review: Higher-Order Functions

you had higher-order functions like this:

(proc, items):

function list

items is None:

return None

return IntList(proc(items.head), map(proc, items.tail))

could write

map(abs, makeList(-10, 2, -11, 17))

====> makeList(10, 2, 11, 17)

lambda x: x * x, makeList(1, 2, 3, 4))

====> makeList(t(1, 4, 9, 16)

not have these directly, but can use abstract classes or
and subtyping to get the same effect (with more writing)

15:40:27 2017 CS61B: Lecture #9 10

Map in Java

with one integer argument */

IntUnaryFunction {

x);

IntList map(IntUnaryFunction proc,

IntList items) {

if (items == null)

return null;

else return new IntList(

proc.apply(items.head),

map(proc, items.tail)

);

}

use of this function that’s clumsy. First, define class for
value function; then create an instance:

implements IntUnaryFunction {
int apply(int x) { return Math.abs(x); }

----------------------------------------------

new Abs(), some list);

15:40:27 2017 CS61B: Lecture #9 11

Lambda Expressions

one can create classes likes Abs on the fly with anonymous

new IntUnaryFunction() {
public int apply(int x) { return Math.abs(x); }
some list);

sort of like declaring

Anonymous implements IntUnaryFunction {
int apply(int x) { return Math.abs(x); }

writing

new Anonymous(), some list);

15:40:27 2017 CS61B: Lecture #9 12



Lambda in Java 8

lambda expressions are even more succinct:

int x) -> Math.abs(x), some list);
even better, when the function already exists:

map(Math::abs, some list);

figure out you need an anonymous IntUnaryFunction and cre-

see examples in game2048.GUI:

addMenuButton("Game->New", this::newGame);

second parameter of ucb.gui2.TopLevel.addMenuButton
call-back function.

Java library type java.util.function.Consumer, which
one-argument method, like IntUnaryFunction,

15:40:27 2017 CS61B: Lecture #9 13

Useful (albeit Dangerous) Features of Java 8

indicated above, before Java 8, interfaces contained just static
and abstract methods.

implement multiple interfaces, but extend only one class:
interface inheritance, but single body inheritance.

scheme is simple, and pretty easy for language implementors to
implement.

there are cases where it would be nice to be able to “mix
implementations from a number of sources.

introduced static methods into interfaces and also default
which are essentially instance methods and are used when-

method of a class implementing the interface would otherwise
abstract.

feature, but, as in other languages with full multiple inheri-
C++ and Python), it can lead to confusing programs.

is that the new default method feature should be used

15:40:27 2017 CS61B: Lecture #9 14


	Public Service Announcement
	CS61B Lecture #9: Interfaces and Abstract Classes
	Abstract Methods and Classes
	Methods on Drawables
	Concrete Subclasses
	Using Concrete Classes
	Interfaces
	Implementing Interfaces
	Multiple Inheritance
	Review: Higher-Order Functions
	Map in Java
	Lambda Expressions
	Lambda in Java 8
	More Useful (albeit Dangerous) Features of Java 8

