
CS 61B Discussion 4: Inheritance Fall 2018
1 Creating Cats
Given the Animal class, fill in the definition of the Cat class so that it makes a "Meow!" noise
when greet() is called. Assume this noise is all caps for kittens (less than 2 years old).

1 public class Animal {
2 protected String name, noise;
3 protected int age;
4 public Animal(String name, int

age) {
5 this.name = name;
6 this.age = age;
7 this.noise = "Huh?";
8 }
9 public String makeNoise() {

10 if (age < 2) {
11 return

noise.toUpperCase();
12 }
13 return noise;
14 }
15 public String greet() {
16 return name + ": " +

makeNoise();
17 }
18 }

class Cat extends Animal {
public Cat(String name, int

age) {
super(name, age);
this.noise = "Meow!";

}
}

Inheritance is powerful because it allows us to reuse code for related classes. With the Cat class
here, we just have to re-write the constructor to get all the goodness of the Animal class.

Why is it necessary to call super(name, age); within the Cat constructor? It turns out that
a subclass’ constructor by default always calls the superconstructor. If we didn’t specify the call
to the Animal superconstructor that takes in a String and a int, we’d get a compiler error.
This is because the default superconstructor (super();) would have been called. Only problem
is that the Animal class has no such zero-argument constructor!

By explicitly calling super(name, age); in the first line of the Cat constructor, we avoid
calling the default superconstructor.

Similarly, not providing any explicit constructor at all in the Cat implementation would also result
in code that does not compile. This is because when there are no constructors available in a class,
Java automatically inserts a no-argument constructor for you. In that no-argument constructor,
Java will then attempt to call the default superconstructor, which again, does not exist.

Also note that declaring a noise field at the top of the Cat class would not be correct. Since in
Java, fields are bound at compile time, when the superclass’s makeNoise() function calls upon
noise, we will receive "Huh?". Because of this confusing subtlety of Java, which is called field
hiding, it is generally a bad idea to have an instance variable in both a superclass and a subclass
with the same name.

CS 61B, Fall 2018, Discussion 4: Inheritance 1



2 Impala-ments
a) We have two interfaces, BigBaller and ShotCaller. We also have LilTroy, a concrete
class, which should implement BigBaller and ShotCaller. Fill out the blank lines below so
that the code compiles correctly.

1 interface BigBaller {
2 void ball();
3 }
4 interface ShotCaller {
5 void callShots();
6 }
7 public class LilTroy implements BigBaller, ShotCaller {
8 public void ball() {
9 System.out.println("Wanna be a, baller");

10 }
11 public void callShots() {
12 System.out.println("Shot caller");
13 }
14 public void rap() {
15 System.out.println("Say: Twenty inch blades on the Impala");
16 }
17 }

b) We have a BallCourt where ballers should be able to come and play. However, the below
code demonstrates an example of bad program design. Right now, only LilTroy instances can
ball.

1 public class BallCourt {
2 public void play(LilTroy lilTroy) {
3 lilTroy.ball();
4 }
5 }

Fix the play method so that all the BigBallers can ball.
public class BallCourt {

public void play(BigBaller baller) {
baller.ball();

}
}

c) We discover that Rappers have some common behaviors, leading to the following class.
1 class Rapper {
2 public abstract String getLine();
3 public final void rap() {
4 System.out.println("Say: " + getLine());
5 }
6 }

Will the above class compile? If not, why not? How can we fix it? This class will NOT compile.
Rapper class has a method names getLine, which is declared abstract. It does not have
any method implementation. Would it be possible to create an object from a class where a method
lacks the implementation? Definitely not! By adding the abstract keyword before the class

CS 61B, Fall 2018, Discussion 4: Inheritance 2



keyword, the class will compile normally. The first line should look like abstract class
Rapper.

d) Rewrite LilTroy so that LilTroy extends Rapper and displays exactly the same behavior
as in part a) without overriding the rap method (in fact, you cannot override final methods).
public class LilTroy extends Rapper implements BigBaller, ShotCaller {

@Override
public void ball() {

System.out.println("Wanna be a, baller");
}

@Override
public void callShots() {

System.out.println("Shot caller");
}

@Override
public String getLine() {

return "Twenty inch blades on the Impala";
}

}

Note that most of the Rapper’s implementation can be reused in all its subclasses, as long as they
correctly implement getLine. Rapper captures a reusable and common behavior (rap), while
delegating some parts of implementations to its subclasses.

Here, we also wrote @Override above the methods we intended to override. While this anno-
tation line is optional, if included, the compiler will bring any such labeled functions that aren’t
actually correctly overriding anything to your attention.

3 Raining Cats & Dogs
We now have the Dog class! (Assume that the Cat and Dog classes are both in the same file as
the Animal class.)

1 class Dog extends Animal {
2 public Dog(String name, int age) {
3 super(name, age);
4 noise = "Woof!";
5 }
6 public void playFetch() {
7 System.out.println("Fetch, " + name + "!");
8 }
9 }

Consider the following main function in the Animal class. Decide whether each line causes a
compile time error, a runtime error, or no error. If a line works correctly, draw a box-and-pointer
diagram and/or note what the line prints.
public static void main(String[] args) {

Cat nyan = new Animal("Nyan Cat", 5); (A) compile time error

CS 61B, Fall 2018, Discussion 4: Inheritance 3



The static type of nyan must be the same class or a superclass of the dynamic type. It doesn’t
make sense for the dynamic type to be the superclass of the static type.

Animal a = new Cat("Olivia Benson", 3); (B) no error
a = new Dog("Fido", 7); (C) no error
System.out.println(a.greet()); (D) "Fido: Woof!"
a.playFetch(); (E) compile time error

The compiler attempts to find the method playFetch in the Animal class (a’s static type).
Because it does not find it there, there is an error because the compiler does not check the Dog
class (dynamic type) at compile time.

Dog d1 = a; (F) compile time error

The compiler views the type of variable a to be Animal because that is its static type. It doesn’t
make sense to assign an Animal to a Dog variable.

Dog d2 = (Dog) a; (G) no error

The (Dog) a part is a cast. Casting tells the compiler to treat a as if it were a Dog. Casting
changes the compiler’s perception of a variable’s dynamic type for the one line of the cast. After
that line, a’s static type goes back to being Animal.

d2.playFetch(); (H) "Fetch, Fido!"
(Dog) a.playFetch(); (I) compile time error

Parentheses are important when casting. Here, the cast happens after a.playFetch() is evalu-
ated. The return type of playFetch() is void, and it makes no sense to cast something void
to a Dog. This is simply invalid. Something that would work is: ((Dog) a).playFetch();

Animal imposter = new Cat("Pedro", 12); (J) no error
Dog fakeDog = (Dog) imposter; (K) runtime error

The compiler sees that we’d like to treat imposter like a Dog. imposter’s static type is
Animal, so it’s possible that its dynamic type is actually Dog. However, at runtime, when the cast
actually happens, we see a ClassCastException because the dynamic type of imposter
(Cat) is not compatible with Dog.

Cat failImposter = new Cat("Jimmy", 21); (L) no error
Dog failDog = (Dog) failImposter; (M) compile time error

The compiler sees that we’d like to treat failImposter like a Dog. However, unlike the ex-
ample above, failImposter’s static type is Cat, so it’s impossible that its dynamic type is
actually Dog. Thus, the compiler states that these are inconvertible (incompatible) types.
}

CS 61B, Fall 2018, Discussion 4: Inheritance 4



4 Bonus: An Exercise in Inheritance Misery
Cross out any lines that cause compile or runtime errors. What does the main program output
after removing those lines?

Moral of the story: fields are hidden if also defined in the subclass, and therefore you should avoid
doing that because it makes the code confusing.
class A {

int x = 5;
public void m1() {System.out.println("Am1-> " + x);}
public void m2() {System.out.println("Am2-> " + this.x);}
public void update() {x = 99;}

} class B extends A {
int x = 10;
public void m2() {System.out.println("Bm2-> " + x);}
public void m3() {System.out.println("Bm3-> " + super.x);}
public void m4() {System.out.print("Bm4-> "); super.m2();}

} class C extends B {
int y = x + 1;
public void m2() {System.out.println("Cm2-> " + super.x);}
/* public void m3() {System.out.println("Cm3-> " + super.super.x);} */

super.super is invalid syntax.
public void m4() {System.out.println("Cm4-> " + y);}
/* public void m5() {System.out.println("Cm5-> " + super.y);} */

C’s superclass B, and B’s superclass A both don’t have the variable y.
} class D {

public static void main (String[] args) {
A b0 = new B();
System.out.println(b0.x); (A) 5
b0.m1(); (B) Am1->5
b0.m2(); (C) Bm2->10
/* b0.m3(); */ (D) compile time error; no m3() in A.

B b1 = new B();
b1.m3(); (E) Bm3->5
b1.m4(); (F) Bm4->Am2->5

A c0 = new C();
c0.m1(); (G) Am1->5

A a1 = (A) c0;
C c2 = (C) a1;
c2.m4(); (H) Cm4->11
((C) c0).m3(); (I) Bm3->5

b0.update();
b0.m1(); (J) Am1->99

}}

If you’re curious, you can read more about field hiding at this link.

CS 61B, Fall 2018, Discussion 4: Inheritance 5

https://docs.oracle.com/javase/tutorial/java/IandI/override.html

	Creating Cats
	Impala-ments
	Raining Cats & Dogs
	Bonus: An Exercise in Inheritance Misery

